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Abstract

Precise 3D head pose estimation plays a signi�cant role in developing human-computer interfaces and practical

face recognition systems. This task is challenging due to the particular appearance variations caused by pose changes

for a certain subject. In this work, the pose data space is considered as a union of submanifolds which characterize

different subjects, instead of a single continuous manifold as conventionally regarded. A novel manifold embedding

algorithm dually supervised by both identity and pose information, called Synchronized Submanifold Embedding

(SSE), is proposed for person-independent precise 3D pose estimation, which means that the testing subject may

not appear in the model training stage. First, the submanifold of a certain subject is approximated as a set of

simplexes constructed using neighboring samples. Then, these simplexized submanifolds from different subjects are

embedded by synchronizing the locally propagated poses within the simplexes and at the same time maximizing

the intra-submanifold variances. Finally, the pose of a new datum is estimated as the propagated pose of the nearest

point within the simplex constructed by its nearest neighbors in the dimensionality reduced feature space. The

experiments on the 3D pose estimation database, CHIL data for CLEAR07 evaluation, and the extended application

for age estimation on FG-NET aging database, demonstrate the superiority of SSE over conventional regression

algorithms as well as unsupervised manifold learning algorithms.

Index Terms
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I. INTRODUCTION

A face image encodes a variety of useful information, such as identity [29], emotion [25] and head pose [1],

which are signi�cant for developing practical and humanoid computer vision systems. The problems of identity

veri�cation and emotion recognition have been extensively studied as conventional multi-class pattern recognition

problems in the computer vision literature. Many commercial systems have been developed for human identity

veri�cation. However, the research on head pose estimation, especially for precise 3D head pose estimation, is still

far from mature due to the underlying dif�culties and challenges. First, the database and ground truth are much more

dif�cult to obtain than the identity and emotion information. Second, the style of pose variation is personalized, and

greatly depends on the 3D geometry of the human head. Finally, the pose labels are of real values, and hence the

pose estimation problem is essentially a regression problem rather than a multi-class pattern recognition problem.

Current research [5] [16] [9] [27] on appearance based head pose estimation can be roughly divided into three

categories. The �rst category [15] [16] formulates pose estimation as a conventional multi-class pattern recognition

problem, and only rough pose information is inferred from these algorithms. The second category takes pose

estimation as a regression problem, and nonlinear regression algorithms, e.g. Neural Network [5], are used for

learning the mapping from the original appearance features to the pose label. The last category assumes that the

pose data lie on or nearly on a low-dimensional manifold, and manifold embedding techniques [6] [8] [9] [12]

[19] [18] are utilized for learning a more effective representation for pose estimation. In this work, we address the

challenging problem of person-independent precise 3D head pose estimation, instead of the rough discrete pose

estimation in the pan direction as done conventionally, and hence the algorithms like Linear Discriminant Analysis

[10] from the �rst category are inapplicable in our scenario. To effectively exploit the underlying geometry structure

information of the pose data space as well as the available identity and pose information, our solution is pursued

within the third category, but many algorithms within this category, e.g. [18], are not suitable for the task we

concern in this paper since they were proposed with the underlying assumption that the testing subject appears in

the model training set.

In this work, we present a dually supervised manifold embedding algorithm for person-independent precise 3D

head pose estimation motivated from the following observations: 1) the pose sample data are often from multiple

subjects, and distributed on distinctive submanifolds of different subjects instead of a single continuous manifold

assumed by most conventional manifold learning [4][22][26] algorithms, such as ISOMAP [23], Locally Linear

Embedding (LLE) [21], and Laplacian Eigenmaps [3]; 2) these submanifolds commonly share similar geometric

shapes as shown in Figure 1; and 3) a desirable representation for 3D head pose estimation should be person-

independent, namely the model trained on training data has good generalization capability on data from unknown
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Fig. 1. The 3D embedding of the pose data from three subjects. The data are shown to lie on three distinctive submanifolds instead of a
single continuous manifold.

subject.

Our proposed manifold embedding algorithm is dually supervised by both identity and pose information. More

speci�cally speaking, �rst, the submanifold of each subject is approximated as a set of simplexes [17] constructed

using neighboring samples, and the pose label is further propagated within all the simplexes by using the generalized

barycentric coordinates [17]. Then these submanifolds are synchronized by seeking the counterpart point of each

sample within the simplexes of a different subject, and consequently the synchronized submanifold embedding is

formulated to minimize the distances between these aligned point pairs and at the same time maximize the intra-

submanifold variance. Finally, for a new datum, a simplex is constructed using its nearest neighbors measured in

the dimensionality reduced feature space, and then its pose is estimated as the propagated pose of the nearest point

within the simplex.

The rest of the paper is organized as follows. Section II introduces the motivations from conventional manifold

learning algorithms, followed by the formulation of synchronized submanifold embedding. The pose estimation by

local simplex propagation is described in Section III. Experimental results on precise 3D head pose estimation, and

the extended application of age estimation, are demonstrated in Section IV. We conclude this paper in Section V.

II. SYNCHRONIZED SUBMANIFOLD EMBEDDING FOR PERSON-INDEPENDENT POSE ESTIMATION

Here, we assume that the training sample data are given as Xc = [xc
1, x

c
2, · · · , xc

nc
], where xc

i ∈ Rm, i =

1, 2, · · · , nc, and c = 1, 2, · · · , Nc. nc is the number of training samples for the c-th subject, Nc is the number

of subjects, and we have N =
∑Nc

c=1 nc samples in total. Correspondingly, the pose labels are presented as Θc =

[θc
1, θ

c
2, · · · , θc

nc
], c=1, 2, · · · , Nc, where θc

i ∈ R3, i = 1, 2, · · · , nc and three values of θc
i are the pan, tilt and yaw

angles of the sample xc
i . For ease of presentation, we denote the concatenated sample data as X = [x1, x2, · · · , xN ]

and the concatenated label matrix as Θ = [θ1, θ2, · · · , θN ].
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A. Motivations

Recent work [6] [9] [19] demonstrated the effectiveness of manifold learning techniques for head pose estimation.

The high-dimensional pose data are assumed to lie on or nearly on a low-dimensional continuous manifold, and

the manifold learning techniques such as LLE and Laplacian Eignmaps, or their linear extensions [12] [9], are used

for manifold embedding. Then the Nearest Neighbor criterion [10] or other simple linear regression approach is

used for �nal head pose estimation.

Though there were some attempts [20] to develop supervised manifold learning algorithms for multi-class

classi�cation problems, most manifold learning algorithms run in an unsupervised manner for regression problems

like precise 3D head pose estimation. Our work presented in this paper is motivated by the observation that both

identity and pose information are mostly available in the model training stage and they are useful for developing

effective person-independent precise head pose estimation algorithm. More speci�cally speaking, it is commonly

believed [10] that for regression or classi�cation problems, the label information can greatly improve algorithmic

performance compared with the unsupervised algorithms which utilize only original feature information. Besides

the pose label information, the identity information is valuable for person-independent head pose estimation. On

the one hand, the pose data often come from multiple subjects, and lie on separated distinctive submanifolds; hence

the assumption that the data lie on a single continuous manifold cannot be satis�ed in this scenario. On the other

hand, the submanifolds of different subjects often share similar geometric structures as shown in Figure 1, and the

algorithmic person-independence and generalization capabilities can be further promoted by synchronizing the pose

labels on different submanifolds.

To suf�ciently utilize both the pose label information and the identity information, we provide as follows a

dually supervised algorithm, called synchronized submanifold embedding, to seek an effective representation for

person-independent precise 3D head pose estimation.

B. Synchronized Submanifold Embedding

As shown in Figure 1, the pose image data of a certain subject constitute a continuous submanifold. To obtain

a person-independent representation for 3D head pose estimation, it is natural to learn a low-dimensional subspace

by synchronizing these submanifolds, such that the samples from different subjects yet with similar poses will be

projected to similar low-dimensional representations.

Before formally describing our solution to learn such a subspace, we review some terminologies on simplex [17]

and generalized barycentric coordinates.

A k-simplex is a k-dimensional analogue of a triangle. Speci�cally, a k-simplex is the convex hull of a set of
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Fig. 2. An illustration of simplexes: (a) 0-simplex, (b) 1-simplex, (c) 2-simplex, and (d) 3-simplex.

(k + 1) af�nely independent points1 in some Euclidean space of dimension k or higher. Mathematically speaking,

denote the vertices as Z = [z0, z1, · · · , zk], and then the k-simplex is expressed as

Sk = {
k∑

j=0

tjzj :
k∑

j=0

tj = 1, tj ≥ 0}. (1)

The coordinates [t0, t1, · · · , tk] in Sk(Z) are called the generalized barycentric coordinates, which are the general-

ization of barycentric coordinates. An illustration of simplexes is shown in Figure 2.

1) Submanifold Simplexization: As the head pose label can be of any real value within [0 360), it is often

dif�cult to obtain images with exactly the same poses yet from different subjects. Hence the submanifolds cannot

be directly aligned based on these discrete training samples, and traditional supervised subspace learning algorithms

like Linear Discriminant Analysis [2] cannot be used for the task we concern in this paper.

In this work, we present an approach to transform the labeled discrete samples on a submanifold into a set of

continuous simplexes with propagated pose labels. For each sample datum xc
i , the k-nearest neighbors of the same

subject measured by pose label distance are used to construct a k-simplex as

Sk(xc
i ) = {

k∑

j=0

tjx
c
ij

:
k∑

j=0

tj = 1, tj ≥ 0}, (2)

where {xc
ij
, j = 1, 2, · · · , k} is the k nearest neighbors of sample xc

i within the same submanifold and xc
i0

= xc
i .

Motivated by the work of LLE [21], we assume in this work that the nonnegative linear reconstruction relationship

within the k-simplex Sk(xc
i ) can be bidirectionally transformed between features and pose labels. That is, for a

point within Sk(xc
i ), denoted as yt

k(x
c
i ) =

∑k
j=0 tjx

c
ij

, its pose label can be propagated from the poses of vertices

using the same corresponding generalized barycentric coordinate vector t as

θt
k(x

c
i ) =

k∑

j=0

tj θc
ij
. (3)

1In this work, the af�nely independent property is assumed for the k nearest neighbors of a datum, which is commonly satis�ed since k
is small in our experiments.



6

Fig. 3. An illustration of submanifold synchronization by simplicization. Note that to facilitate display, we utilize the 2-simplex for
demonstration and the Euclidian distance in the 2D plane does not exactly re�ect true distance between sample pair. The blue points
represent the training samples, and the red points represent the corresponding synthesized points in distinctive submanifolds with the same
poses. The dashed bidirectional lines connect the point pairs with the same poses.

Note that the bidirectional propagation of the generalized barycentric coordinates between features and labels is

assumed only within a local neighborhood like the k-simplex around a certain sample, which is in accord with the

general locally linear assumption of a manifold [21].

In this way, beyond a set of discrete samples, each submanifold is expressed as a set of labeled continuous

simplexes, and then for each datum xc
i , it has the potential to �nd a counterpart point with the same pose within

the simplexes of any other subject. Consequently, these submanifolds of different subjects can be synchronized by

aligning these data pairs.

2) Submanifold Embedding by Pose Synchronization: As described above, we aim to pursue a low-dimensional

representation such that the submanifolds of different subjects are aligned according to the precise pose labels. For

each sample xc
i , the point within the reconstructed simplexes of the c′-th subject (c′ 6= c) and with the most similar

pose is calculated in two steps. First, the generalized barycentric coordinates of this point is computed as

(õ, t̃) = arg min
o,t

||θc
i − θt

k(x
c′
o )||2, (4)

then the corresponding datum and label are derived as

y(xc
i , c

′) =
k∑

j=0

t̃j xc′
õj

, (5)

θ(xc
i , c

′) =
k∑

j=0

t̃j θc′
õj

. (6)

Remark: For a given o, the task becomes a standard quadratic optimization problem:

min
t
||θc

i −
k∑

j=0

tj θc′
oj
||2, st.

k∑

j=0

tj = 1, tj ≥ 0, (7)

which can be solved by general optimization tool, such as the quadprog function in Matlab.
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There are serval ways to derive a low-dimensional representation for synchronizing these submanifolds, and in

this paper, we utilize the linear projection approach, namely, the manifold embedding is achieved by seeking a

projection matrix W ∈ Rm×d (usually d ¿ m) and

yi = W T xi, (8)

where yi ∈ Rd is the low-dimensional representation of sample xi.

On the one hand, the projection matrix W should minimize the distances between each sample to its nearest

neighbor (measured by pose label distance) within the simplexes of any other subject. Namely, it should minimize

Ŝsyn(W ) =
Nc∑

c=1

nc∑

i=1

∑

c′ 6=c

||W T xc
i −W T y(xc

i , c
′)||2I(xc

i , c
′), (9)

where the indicator function I(xc
i , c

′) = 1, if ||θc
i − θ(xc

i , c
′)|| ≤ ε; 0, otherwise. ε is a threshold to determine

whether to synchronize the point pairs, and in this work, ε is set as 2 for the pose estimation problem and as 1 for

age estimation in the extended application.

On the other hand, to promote the separability of different poses, it is desirable to maximize the distances between

different sample pairs, namely

Ŝsep(W ) =
Nc∑

c=1

nc∑

i=1

nc∑

j=1

||W T xc
i −W T xc

j ||2. (10)

To achieve these dual objectives, the projection matrix W is derived as

arg max
W

Ŝsep(W )
Ŝsyn(W )

= arg max
W

Tr(W T S1W )
Tr(W T S2W )

, (11)

where

S2 =
Nc∑

c=1

nc∑

i=1

∑

c′ 6=c

(xc
i − y(xc

i , c
′))(xc

i − y(xc
i , c

′))T I(xc
i , c

′),

S1 =
Nc∑

c=1

nc∑

i=1

nc∑

j=1

(xc
i − xc

j)(x
c
i − xc

j)
T . (12)

The objective function in the optimization problem (11) is nonlinear and commonly there is no closed form

solution. Usually, it is transformed into another more attractive form as arg maxW Tr[(W T S2W )−1(W T S1W )

and solved with the generalized eigenvalue decomposition method as

S1wi = λiS2wi, (13)

where the vector wi is the eigenvector corresponding to the i-th largest eigenvalue λi, and it constitutes the i-th

column vector of the projection matrix W .
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C. Pose Estimation by Local Simplex Propagation

After we obtain the projection matrix W , the sample data are all transformed into the low-dimensional feature

space as in Eqn. (8), and then all the training samples are denoted as Y = [y1, y2, · · · , yN ].

For a new datum x, �rst, we also transform it into the low-dimensional feature space as y = W T x. Then, we

search for its nearest point within the simplex constructed using its (k+1) nearest neighbors in the low-dimensional

feature space, namely, search for the generalized barycentric coordinate vector t̃ by optimizing

min
t
||y −

k∑

j=0

tjyij
||2, s.t.

k∑

j=0

tj = 1, tj ≥ 0, (14)

where yij
, j = 0, 1, · · · , k, are the (k + 1) nearest samples of y. Then, the label of the new datum is predicted by

propagating the generalized barycentric coordinates to the labels of the vertices of the constructed k-simplex,

θx =
k∑

j=0

t̃j θij
. (15)

III. ALGORITHM DISCUSS

In this section, we highlight some aspects of our proposed Synchronized Submanifold Embedding (SSE) algorithm

by comparing with conventional manifold learning algorithms for head pose estimation.

What are the advantages of SSE over unsupervised manifold learning algorithms? In the past decade, unsupervised

manifold learning techniques have attracted much attention for both theoretical research and practical applications.

Among them, ISOMAP [23], LLE [21] and Laplacian Eigenmaps [3] are the most popular ones. Most of these

algorithms are unsupervised, and hence the derived low-dimensional representation is not guaranteed to be optimal

for classi�cation or regression problems. SSE suf�ciently utilizes both the pose label information and the identity

information to alleviate the difference of data from different subjects yet with similar poses, and hence it has the

potential of yielding a more robust representation for person-independent precise 3D head pose estimation.

Why not to use conventional supervised manifold learning algorithms? Manifold learning was previously explored

in a supervised manner [20] by considering the labeling information for computing the local distances or similarities.

That is, the distance computed on features is replaced by the product or weighted sum of the distances computed

on features and on pose labels. However, for this type of supervised algorithm, the local distance or similarity is

often dominated by the label information, and the derived representation does not essentially re�ect the original

manifold structure, and hence they are more like conventional general supervised learning algorithms than manifold

learning algorithms. Moreover, conventional supervised manifold learning algorithms, such as Supervised LLE [20],

were designed for multi-class classi�cation problems, and hence inapplicable for precise 3D head pose estimation.

SSE instead aligns the submanifolds with the propagated pose labels and within each submanifold, the manifold

information is suf�ciently retained. Hence SSE is supervised and also follows the essence of manifold learning.
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Finally, SSE is dually supervised by both pose labels and identity information, while instead conventional supervised

manifold learning algorithms utilize only one type of information.

IV. EXPERIMENTS

In this section, we systematically evaluate the effectiveness of our proposed algorithm, synchronized submanifold

embedding (SSE), for person-independent precise 3D head pose estimation. We use the latest precise 3D head pose

estimation database, CHIL data, from the CLEAR07 evaluation [30] for the experiments. To further demonstrate

the generality of SSE in person-independent estimation, we evaluate our algorithm on the age estimation problem

and the popular aging database FG-NET [31]. For comparison, Principal Components Analysis (PCA) [13] [24]

and Locally Embedded Analysis (LEA) [9] are implemented. As mentioned beforehand, conventional supervised

subspace learning algorithm LDA cannot be directly applied for the 3D pose estimation problem, and hence we did

not implement for comparison. The pose estimation from PCA and LEA is also based on local simplex propagation

as in SSE. Also, the popular regression algorithms Neural Network (NN) [5] and Quadratic Models (QM) [14] are

implemented for comparison in both pose and age estimation.

A. Person-Independent Precise 3D Head Pose Estimation

1) Data Set: CHIL data for CLEAR07 evaluation: The CLEAR workshop [30] is an international effort to

evaluate systems that are designed to recognize events, activities, and their relationships in interaction scenarios. In

this work, we use the latest pose database, CHIL data, in the CLEAR07 evaluation, and this database is intended

for precise 3D head pose estimation.

In the CHIL data, observations from four cameras that are placed in a room's upper corners are obtained for

each subject. This data set includes 15 different persons standing in the middle of the room, rotating their heads

towards all possible directions while wearing a magnetic motion sensor (Flock of Birds) in order to obtain their

ground truth head orientations. The task is to estimate the head orientations with respect to the room's coordinate

system, thus to obtain a joint estimate from all four views to achieve a hypothesis more robust than estimating

from just one single camera. Some sample data are displayed in Figure 4, and the four images in each column are

from the same subject and captured by four cameras simultaneously. Precise 3D pose estimation in this scenario is

very dif�cult due to the fact that the images are in a very low resolution and also noisy.

In our experiments, we use the same experimental con�guration as designed by the evaluation committees. For

training, 10 videos, including annotations of the head bounding boxes and the original ground truth information

about the true head pose, are provided. For evaluation, 5 videos along with the head bounding box annotations

are provided. The ground truth information is used for scoring. People appearing in the training set do not appear

in the evaluation set. Since manual annotations of the head bounding box only occur at every 5-th frame of the
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Fig. 4. The cropped sample images in the CHIL data for CLEAR07 evaluation. Note that each column contains four images of the same
subject captured by the four cameras.

(a) (b)

Fig. 5. Embedding visualization and divergency evaluation: (a) the 3D distribution of the samples from different subjects and at different
poses; and (b) the divergency of samples around certain poses for the algorithms PCA, LEA and SSE. Note that in plot (a), the shapes of
the samples re�ect different subjects and the colors re�ect difference poses, and only three subjects are shown for the ease of display; and
the horizontal axes are the indexes of the ten randomly selected poses in plot (b).

videos, only hypotheses corresponding to these time stamps are going to be scored [30]. Finally, the training set

contains 5348 pose samples (each sample consists of four images captured by four different cameras) from the 10

subjects, and the testing set contains 2402 pose samples. Each image is cropped and scaled to size 40-by-40, and

then gray-level values of all the four images are concatenated as the feature vector for each pose sample. For all

the experiments, we conduct PCA and reduce the feature dimension to 300, and then all the other algorithms are

performed on the dimensionality reduced feature space. The Mean Absolute Error (MAE) [14] is used for accuracy

evaluation.

2) Embedding Visualization and Divergency: The algorithms PCA, LEA, and SSE all provide a linear embedding

of the manifold/submanifold from the original feature space to a low-dimensional feature space. As described before,

the person-independent property is critical for algorithmic generalization to unknown testing subjects.

In this subsection, we evaluate the person-independent characteristic of the low-dimensional feature space derived

from the training set of CHIL data. The left plot in Figure 5 displays the 3D distribution of samples from different

subjects at different poses in the derived feature space from SSE, and we can observe that the samples of different



11

subjects yet at similar poses gather together in the feature space, which coincides with the target of our SSE

algorithm.

The right plot in Figure 5 shows the divergency of the dimensionality reduced samples around 10 poses compared

between PCA, LEA, and SSE. For computing the divergency, the feature dimension is set as 3, and the divergency

is de�ned as the standard deviation of the nine samples around certain pose, normalized by the standard deviation

of all the samples in the training set. The results shows that the divergency based on the submanifold embedding

from SSE is much smaller than those based on the manifold embeddings from PCA and LEA. The low divergency

ensures a good generalization capability of SSE on the testing data.

Fig. 6. The sum of total average MAEs for PCA, LEA, and SSE on different feature dimensions for precise 3D pose estimation on the
CHIL data in the CLEAR07 evaluation. Note that the results of QM and NN are expressed as lines in the �gure, and MAE is the sum of
the MAEs for three different directions.

TABLE I
MEAN ABSOLUTE ERRORS OF THE ALGORITHMS PCA, LEA, QM, NN AND SSE ON THE CHIL DATA OF THE CLEAR07 EVALUATION.

NOTE THAT THE OPTIMAL PARAMETERS USED FOR DIFFERENT SUBJECTS ARE DIFFERENT, AND THE TOTAL AVERAGE IS NOT THE

WEIGHTED AVERAGE OF THE RESULTS FROM THE FIVE SUBJECTS.

Subject-1 Subject-2 Subject-3 Subject-4 Subject-5 Total Average
Pan-PCA 8.54 8.19 6.91 4.53 4.78 6.94
Pan-LEA 7.60 8.77 6.33 4.50 4.511 6.72
Pan-QM 61.31 55.37 41.27 33.45 38.12 46.78
Pan-NN 64.17 45.83 40.27 39.80 41.09 46.82
Pan-SSE 8.45 7.27 6.22 4.33 3.94 6.60
Tilt-PCA 8.49 5.97 11.59 5.25 12.53 10.86
Tilt-LEA 7.88 5.74 12.29 5.29 12.23 10.87
Tilt-QM 7.97 8.10 17.38 8.05 23.48 11.83
Tilt-NN 14.42 15.99 17.85 11.48 16.37 15.10
Tilt-SSE 8.61 6.28 9.08 4.92 9.64 8.25

Roll-PCA 4.66 2.59 4.20 2.86 3.30 4.01
Roll-LEA 5.41 2.59 4.06 2.90 2.91 4.07
Roll-QM 7.68 5.83 10.33 6.61 7.01 7.55
Roll-NN 11.24 10.07 12.23 12.04 11.79 11.44
Roll-SSE 5.55 2.22 3.72 2.38 2.34 3.42

3) Precise 3D Head Pose Estimation Results: By following the experimental con�guration for the CLEAR07

evaluation, we evaluated the performance of the algorithms PCA, LEA, QM, NN and SSE. The detailed results are



12

Fig. 7. The cropped samples from the FG-NET aging database. Note that all these images are from the same subject yet of different ages.

shown in Figure 6 and Table I. From these results2, we can have the following observations:

1) SSE consistently achieves lower MAE than PCA, LEA, QM and NN for both individual subject evaluation

and overall evaluation;

2) NN and QM perform badly in this experiment, which should come from the fact that the training subjects

and the testing subjects are different, and NN as well as QM lack enough generalization capability, since

they did not explicitly pursue the person-independence.

3) The performance of LEA is better than that of PCA, which validates the effectiveness of exploiting manifold

structure of the data space for pose estimation [9].

B. Beyond: Person-Independent Age Estimation

Besides precise 3D head pose estimation, our proposed algorithm SSE can be used for any regression problems

containing images from different subjects. The general idea of SSE is to employ the identity information for

pursuing person-independent representation. Here we take the age estimation problem as an example to demonstrate

its potential applications in other domains.

1) Data Set: FG-NET Aging Database: The FG-NET aging database [31] is used in our experiments. It contains

1002 face images of 82 subjects with ages ranging from 0 to 69, and each subject has multiple images of different

ages as shown in Figure 7. The �rst 200 appearance parameters of Active Appearance Models [7] are extracted based

on the provided 68 key facial points [14], and used as input features for age estimation. For detailed information

on shape, texture and appearance parameters, please refer to [7]. The Leave-One-Person-Out (LOPO) strategy is

used to evaluate the performance of difference algorithm, and the Mean Absolute Error is again used for measuring

accuracy as in the pose estimation experiments.

2) Age Estimation Results: Detailed experimental results are shown in Figure 8 and Table II. The experimental

results again validate the effectiveness of SSE over the PCA and LEA algorithms in estimation accuracy. The QM

and NN algorithms work well in this experiments, and they perform better than both PCA and LEA. Despite the
2Our reported results here are better than what we reported in [30], because we further re�ned the algorithmic parameters. The NN results

reported in [30] are slightly better that what we reported here because they used extra features besides image intensities.
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Fig. 8. Mean Absolute Errors of PCA, LEA and SSE on different feature dimensions for age estimation on the FG-NET aging database.
Note that the results of QM and NN are expressed as lines in the �gure.

nonlinear property of the QM and NN algorithms, their performances are not as good as SSE which takes into

account both the age information and the subject identity information, and promotes the generalization capability

on the testing data.

TABLE II
MEAN AVERAGE ERRORS OF THE ALGORITHMS PCA, NPE, QM, NN, AND SSE ON THE FG-NET DATABASE WITH THE

LEAVE-ONE-PERSON-OUT STRATEGY.

Group (Sample Number) PCA LEA QM NN SSE
Age 0- 9 (371) 3.66 3.89 5.67 5.25 2.06
Age 10-19 (339) 4.81 4.85 5.54 5.24 3.26
Age 20-29 (144) 8.95 8.67 5.92 5.85 6.03
Age 30-39 (79) 15.00 13.02 10.27 11.29 9.53
Age 40-49 (46) 19.07 19.46 12.24 16.48 11.17
Age 50-59 (15) 18.67 26.13 18.60 28.80 16.00
Age 60-69 (8) 36.25 39.00 28.00 39.50 26.88

Average 7.49 7.65 6.70 6.95 5.21

V. DISCUSSIONS

In this paper, we presented a framework for precise 3D head pose estimation by seeking effective submanifold

embedding with the guidance of both pose and subject identity information. First the submanifolds of different

subjects are simplexized such that they can be synchronized according to the pose labels propagated within the

simplexes. Then submanifold embedding is derived by aligning the pose distribution within different submanifolds,

and �nally the pose label of a new datum is predicted as the propagated pose of the nearest point within the

simplex constructed using its nearest neighbors in the derived low-dimensional feature space. The effectiveness of

the proposed algorithm was validated by the experiments on the latest 3D head pose estimation database, CHIL data

for CLEAR07 evaluation, and its extended application for age estimation on the popular FG-NET aging database.

Our future work in this direction is to develop dually supervised manifold embedding algorithms which can bene�t

both subject identi�cation and the estimation of pose or age information simultaneously.
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