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Abstract. In this paper, we focus on the problem of detecting the headtelike
animals, adopting cat as a test case. We show that the perficendepends cru-
cially on how to effectively utilize the shape and texturattees jointly. Specifi-
cally, we propose a two step approach for the cat head detedti the first step,
we train two individual detectors on two training sets. Omaéniing set is normal-
ized to emphasize the shape features and the other is npechdb underscore
the texture features. In the second step, we train a joirgeshad texture fusion
classifier to make the final decision. We demonstrate thajrafiiant improve-
ment can be obtained by our two step approach. In additioaseepropose a set
of novel features based on oriented gradients, which oiaipes existing leading
features, e. g., Haar, HoG, and EoH. We evaluate our apparaehwell labeled
cat head data set with 10,000 images and PASCAL 2007 cat data.

1 Introduction

Automatic detection of all generic objects in a general sdsra long term goal in im-
age understanding and remains to be an extremely challgpgablem duo to large
intra-class variation, varying pose, illumination changgrtial occlusion, and cluttered
background. However, researchers have recently maddisagrtiprogresses on a par-
ticularly interesting subset of object detection problefase [14, 18] and human de-
tection [1], achieving near 90% detection rate on the fidatze in real-time [18] using
a boosting based approach. This inspires us to considehehtte approach can be
extended to a broader set of object detection applications.

Obviously it is difficult to use the face detection approachgeneric object de-
tection such as tree, mountain, building, and sky detecsote they do not have a
relatively fixed intra-class structure like human facesg@mne step at a time, we need
to limit the objects to the ones that share somewhat similapgrties as human face.
If we can succeed on such objects, we can then consider toygméieNaturally, the
closest thing to human face on this planet is animal headoftlnfately, even for an-
imal head, given the huge diversity of animal types, it i gib difficult to try on all
animal heads. This is probably why we have seen few worksisrattempt.

In this paper, we choose to be conservative and limit our @matdo only one type
of animal head detection, cat head detection. This is ofsenot a random selection.



(a) cat-like animal (b) cats

Fig. 1. Head images of animals of the cat family and cats.

Our motivations are as follows. First, cat can representgelaategory of cat-like an-
imals, as shown in Figure 1 (a). These animals share sinaita §eometry and head
shape; Second, people love cats. A large amount of cat infeyesbeen uploaded and
shared on the web. For example, 2,594,329 cat images hadneaunally annotated
in flickr.com by users. Cat photos are among the most populana photos on the
internet. Also, cat as a popular pet often appears in fanhibt@s. So cat detection can
find applications in both online image search and offline fapinoto annotation, two
important research topics in pattern recognition. Thindeiy the popularity of cat pho-
tos, it is easy for us to get training data. The research camitsndoes need large and
challenging data set to evaluate the advances of the olgéettibn algorithm. In this
paper, we provide 10,000, well labeled cat images. Finaltyraost importantly, the cat
head detection poses new challenges for object detectjonitim. Although it shares
some similar property with human face so we can utilize soxstirg techniques, the
cat head do have much larger intra-class variation than tingah face, as shown in
Figure 1 (b), thus is more difficult to detect.

Directly applying the existing face detection approacloeddtect the cat head has
apparent difficulties. First, the cat face has larger appea variations compared with
the human face. The textures on the cat face are more congglitt}an those on the
human face. It requires more discriminative features tawaghe texture information.
Second, the cat head has a globally similar, but locallyaveishape or silhouette. How
to effectively make use of both texture and shape informasi@ new challenging issue.
It requires a different detection strategy.
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Fig. 2. Mean cat head images on all training data. (a) aligned by Banse shape information is
kept. (b) aligned by both eyes and ears using an optimaiootegcale transformation. (c) aligned
by eyes. More texture information is kept.




To deal with the new challenges, we propose a joint shapeestare detection ap-
proach and a set of new features based on oriented gradiemtapproach is a two step
approach. In the first step, we individually train a shapecter and a texture detector
to exploit the shape and appearance information respécthiigure 2 illustrates our
basic idea. Figure 2 (a) and Figure 2 (c) are two mean cat Ineagds over all training
images: one aligned by ears to make the shape distinct; lilee istaligned to reveal the
texture structures. Correspondingly, the shape and &xletectors are trained on two
differently normalized training sets. Each detector cakerfall use of most discrimi-
native shape or texture features separately. Based onikedettudy of previous image
and gradient features, e.g., Haar [18], HoG [1], EOH [7], \Wevg that a new set of
carefully designed Haar-like features on oriented gradigive the best performance
in both shape and texture detectors.

In the second step, we train a joint shape and texture detecfase the outputs
of the above two detectors. We experimentally demonsthatiethe cat head detection
performance can be substantially improved by carefullyassing shape and texture
information in the first step, and jointly training a fusiolagsifier in the second step.

1.1 Related Work

Since a comprehensive review of the related works on objeetction is beyond the
scope of the paper, we only review the most related works here
Sliding window detection vs. parts based detectiono detect all possible objects in
the image, two different searching strategies have beesia@®d. The sliding window
detection [14,12,18,1, 17,15, 20] sequentially scans @dkjble sub-windows in the
image and makes a binary classification on each sub-windaa énd Jones [18]
presented the first highly accurate as well as real-timetdtdace detector, where a
cascade classifier is trained by AdaBoost algorithm on afsdaar wavelet features.
Dalal and Triggs [1] described an excellent human detedystem through training a
SVM classifier using HOG features. On the contrary, the geased detection [5, 13,9,
6, 3] detects multiple parts of the object and assemblesatts according to geometric
constrains. For example, the human can be modeled as assewiyparts [9, 10] and
the face can be detected using component detection [5].

In our work, we use two sliding windows to detect the “shapait@nd “texture”
part of the cat head. A fusion classifier is trained to prodbedinal decision.
Image features vs. gradient featuresLow level features play a crucial role in the
object detection. The image features are directly extdaittan the image, such as in-
tensity values [14], image patch [6], PCA coefficients [ELld wavelet coefficients [12,
16, 18]. Henry et al.[14] trained a neural network for humeeefdetection using the im-

age intensities iR0 x 20 sub-window. Haar wavelet features have become very popular

since Viola and Jones [18] presented their real-time fatection system. The image
features are suitable for small window and usually requije@d photometric normal-
ization. Contrarily, the gradient features are more robmgtumination changes. The
gradient features are extracted from the edge map [4, 3]iented gradients, which
mainly include SIFT [8], EOH [7], HOG [1], covariance mafi¥], shapelet [15], and
edgelet [19]. Tuzel et al. [17] demonstrated very good tesui human detection using
the covariance matrix of pixel's 1st and 2nd derivatives pixél position as features.



Shapelet [15] feature is a weighted combination of weaksdiass in a local region. It
is trained specifically to distinguish between the two @adsased on oriented gradients
from the sub-window. We will give a detailed comparison of ptoposed features with
HOG and EOH features in Section 3.1.

2 Our Approach — Joint Shape and Texture Detection

The accuracy of a detector can be dramatically improved btfainsforming the object
into a canonical pose to reduce the variability. In face ct@ia, all training samples are
normalized by a rotation+scale transformation. The fadetscted by scanning all sub-
windows with different orientations and scales. Unfortieha unlike the human face,
the cat head cannot be well normalized by a rotation+scaietormation duo to the
large intra-class variation.

In Figure 2, we show three mean cat head images over 5,000ngaimages by
three normalization methods. In Figure 2 (a), we rotate aateshe cat head so that
both eyes appear on a horizontal line and the distance bettmeeears is 36 pixels.
As we can see, the shape or silhouette of the ears is visuatigat but the textures in
the face region are blurred. In a similar way, we compute teamimage aligned by
eyes, as shown in Figure 2 (c). The textures in the face reggi@wisible but the shape
of the head is blurred. In Figure 2 (b), we take a compromisethod to compute an
optimal rotation+scale transformation for both ears areseyer the training data, in a
least square sense. As expected, both ears and eyes arelsdrhkwred.

Intuitively, using the optimal rotation+scale transfotioa may produce the best
result because the image normalized by this method contaim&kinds of informa-
tion. However, the detector trained in this way does not skoperior performance in
our experiments. Both shape and texture information artetdoa certain degree. The
discriminative power of shape features or texture featigrdsirt by this kind of com-
promised normalization.

2.1 Joint shape and texture detection

In this paper, we propose a joint shape and texture deteappnoach to effectively
exploit the shape and texture features. In tfa@ning phase, we train two individual
detectors and a fusion classifier:

1. Train a shape detector, using the aligned training imagewainly keeping the
shape information, as shown in Figure 2 (a); train a textwtedor, using the
aligned training image by mainly preserving the textureinfation, as shown in
Figure 2 (c). Thus, each detector can capture most discatimenshape or texture
features respectively.

2. Train a joint shape and texture fusion classifier to fuseotltput of the shape and
texture detectors.

In the detection phase, we first run the shape and texture detectors independently.
Then, we apply the joint shape and texture fusion classiienake the final decision.
Specifically, we denotécs, ¢} as output scores or confidences of the two detectors,



and{fs, f+} as extracted features in two detected sub-windows. Theridassifier is
trained on the concatenated featufes ct, fs, f:}-

Using two detectors, there are three kinds of detectionlteedanth detectors re-
port positive at roughly the same location, rotation, aralesonly the shape detector
reports positive; and only the texture detector reportstiges For the first case, we
directly construct the featur€s;, c;, fs, f:} for the joint fusion classifier. In the sec-
ond case, we do not have;, f;}. To handle this problem, we scan the surrounding
locations to pick a sub-window with the highest scores bytéxture detector, as il-
lustrated in Figure 3. Specifically, we denote the sub-wimdeported by the detector
as(x,y,w, h, s, 0], where(x, y) is window’s centerw, h are width and height, angd 0
are scale and rotation level. We search sub-windows forekteite/shape detector in
the rangdx +w/4] x [y £+ h/4] x [s £ 1] x [0+ 1]. Note that we use real value score of
the texture detector and do not make 0-1 decision. The soaréatures of the picked
sub-window are used for the features, f;}. For the last case, we compyte,, f,} in
a similar way.

To train the fusion classifier, 2,000 cat head images in thidation set are used as
the positive samples, and 4,000 negative samples are tagist from 10,000 non-cat
images. The positive samples are constructed as usual ejhg the construction of the
negative samples which consist of all incorrectly detestuiples by either the shape
detector or the texture detector in the non-cat images. Bheccurrence relationship
of the shape features and texture features are learnedsitiai of joint training. The
learned fusion classifier is able to effectively reject méaige alarms by using both
shape and texture information. We use support vector maqi@’M) as our fusion
classifier and HOG descriptors as the representations éé#teresf, and f;.

{es, fs} |::> {ct, ft} ce, fi} |::> 3 {cs, fs}

(@) ®)

Fig. 3. Feature extraction for fusion. (a) given a detected suldain(left) by the shape detector,
we search a sub-window (right, solid line) with highest scby the texture detector in sur-
rounding region (right, dashed line). The score and feat{itg f;} are extracted for the fusion
classifier. (b) similarly, we extract the score and featykgs f. } for the fusion.

The novelty of our approach is the discovery that we needparsge the shape and
texture features and how to effectively separate them. &tterlexperimental results
clearly validate the superiority of our joint shape and tegtdetection. Although the
fusion method might be simple at a glance, this is exactlystrength of our approach:
a simple fusion method already worked far better than pressmn-fusion approaches.



3 Haar of Oriented Gradients

To effectively capture both shape and texture informatioe,propose a set of new
features based on oriented gradients.

3.1 Oriented gradients features

Given the imagd, the image gradieng (z) = {g, g, } for the pixelz is computed as:
gn(z) = Gr @ I(z), gu(z) =Gy ® I(2), @)

whereG), andG,, are horizontal and vertical filters, andis convolution operator. A
bank of oriented gradientg/*} X | are constructed by quantifying the gradigitz)
on a number of< orientation bins:

, J(x)] 6(x) € bin
%m?mm () € bin
0 otherwise

(2)

whered(z) is the orientation of the gradieng (x). We call the imagey”® oriented
gradients channel. Figure 4 shows the oriented gradients on a cat head imadiisin
example, we quantify the orientation into four directiovi¢e also denote the sum of
oriented gradients of a given rectangular regitas:

S*(R) = gh(x). 3

TER

It can be very efficiently computed in a constant time usitiegral image technique [18].

Fig. 4. Oriented gradients channels in four directions.

Since the gradientinformation at an individual pixel isilied and sensitive to noise,
most of previous works aggregate the gradient informatioa rectangular region to
form more informative, mid-level features. Here, we revigw most successful fea-
tures: HOG and EOH.



HOG-cell. The basis unit in the HOG descriptor is the weighted oriématistogram
of a “cell” which is a small spatial region, e.@.,x 8 pixels. It can be represented as:

HOG-cel(R) = [S'(R), ..., S*(R), ..., S®(R)]. (4)

The overlapped cells (e.gl,x 4) are grouped and normalized to form a larger spatial
region called “block”. The concatenated histograms forelt#©OG descriptor.

In Dalal and Triggs’s human detection system [1], a lineaW8¥ used to classify
a 64 x 128 detection window consisting of multiple overlapp&él x 16 blocks. To
achieve near real-time performance, Zhu et al. [21] used sl®Gariable-size blocks
in the boosting framework .
EOH. Levi and Weiss [7] proposed three kinds of features on thented gradients:

EOH, (R, k1,k2) = (S*1(R) + €)/(S*2(R) + ¢),
EOH(R, k) = (S*(R) +¢)/(30,(S7(R) + ¢)),
EOHs(R, R, k) = (S¥(R) — S*(R))/sizeof (R),

whereR is the symmetric region aR with respect to the vertical center of the detection
window, ande is a small value for smoothing. The first two features captnether
one direction is dominative or not, and the last feature &lus find symmetry or the
absence of symmetry. Note that using EOH features only mapssficient. In [7],
good results are achieved by combining EOH features withr fssgtures on image
intensity.

Fig. 5. Haar of Oriented Gradients. Left: in-channel featureshRigrthogonal features.

3.2 Our features - Haar of Oriented Gradients

In face detection, the Haar features demonstrated theét gitglity to discover local
patterns - intensity difference between two subregions.iBis difficult to find dis-
criminative local patterns on the cat head which has moreptexand subtle fine scale
textures. On the contrary, the above oriented gradientsiresa mainly consider the
marginal statistics of gradients in a single region. It etifeely captures fine scale tex-
ture orientation distribution by pixel level edge detentaperator. However, it fails to
capture local spatial patterns like the Haar feature. Thative gradient strength be-
tween neighboring regions is not captured either.

To capture both the fine scale texture and the local patterasieed to develop a
set of new features combining the advantage of both Haar mautiegt features. Taking



a close look at Figure 4, we may notice many local patternaah @riented gradients
channel which is sparser and clearer than the original imA@gemay consider that
the gradient filter separates different orientation teegtand pattern edges into several
channels thus greatly simplified the pattern structure ohedannel. Therefore, it is
possible to extract Haar features from each channel to sagte local patterns. For
example, in the horizontal gradient map in Figure 4, we saettie vertical textures
between the two eyes are effectively filtered out so we caityezpture the two eye
pattern using Haar features. Of course, in addition to ¢apjuocal patterns within a
channel, we can also capture more local patterns acrossitfgoedt channels using
Haar like operation. In this paper, we propose two kinds afdees as follows:
In-channel features:

B Sk(Rl) — Sk(Rg)
o Sk(Rl) + Sk(RQ).

HOOG, (R1, Ra, k) (5)
These features measure the relative gradient strengttebattwo regions?; and R,
in the same orientation channel. The denominator plays ma&aration role since we
do not normalizes* (R).

Orthogonal-channel features:

S*(Ry) — S* (Ry)
Sk(Ry) + Sk (Ry)’

HOOG,(R1, R2,k, k*) = (6)
wherek* is the orthogonal orientation with respectig.e.,k* = k+ K /2. These fea-
tures are similar to the in-channel features but operatevorotthogonal channels. In
theory, we can define these features on any two orientaBuisve decide to compute
only the orthogonal-channel features based on two coretides: 1) orthogonal chan-
nels usually contain most complementary information. Tifierimation in two channels
with similar orientations is mostly redundant; 2) we waritéep the size of feature pool
small. The AbaBoost is a sequential, “greedy” algorithmtfar feature selection. If the
feature pool contains too many uninformative features,averall performance may
be hurt. In practice, all features have to be loaded into tagnmemory for efficient
training. We must be very careful about enlarging the siZieatures.

Considering all combinations @t; and R, will be intractable. Based on the success
of Haar features, we use Haar patternsigrand RR», as shown in Figure 5. We call the
features defined in (5) and (6), Haar of Oriented Gradien@Qi&).

4 Experimental Results

4.1 Data set and evaluation methodology

Our evaluation data set includes two parts, the first pamiisoen data, which includes
10,000 cat images mainly obtained from flickr.com; the sdqoeart is from PASCAL

2007 cat data, which includes 679 cat images. Most of our @vdata are near frontal
view. Each cat head is manually labeled with 9 points, twoefpes, one for mouth,
and six for ears, as shown in Figure 6. We randomly divide our oat face images
into three sets: 5,000 for training, 2000 for validationd &)000 for testing.We follow



the PASCAL 2007 original separations of training, validatand testing set on the cat
data. Our catimages can be downloaded from http://mmlabli&.edu.hk/for research
purposes.

Fig. 6. The cat head image is manually labeled by 9 points.

We use the evaluation methodology similar to PASCAL chajéefor object detec-
tion. Suppose the ground truth rectangle and the detect¢ahgle are-, andr,, and
the area of those rectangles atgandA,. We say we correctly detect a cat head only
when the overlap of, andr, is larger than 50%:

o (AgNAG)
1 if (AzUAZ) > 50% ,

0 otherwise

D(rg,ra) = { : (7

whereD(ry,74) is a function used to calculate detection rate and falseralate.

4.2 Implementation details

Training samples.To train the shape detector, we align all cat head image w#peact
to ears. We rotate and scale the image so that two tips of ppesaaon a horizontal line
and the distance between two tips is 36 pixel. Then, we eddrd® x 48 pixel region,
centered 20 pixels below two tips. For the texture deteetdg x 32 pixel region is
extracted. The distance between two eyes is 20 pixel. Thierrég centered 6 pixel
below two eyes.

Features.We use 6 unsigned orientations to compute the oriented gyntaifeatures.
We find the improvement is marginal when finer orientatioresweed. The horizontal
and vertical filters argé-1,0, 1] and[—1, 0, 1]7. No thresholding is applied on the com-
puted gradients. For both shape and texture detector, wa&rcohfeature pools with
200,000 features by quantifying the size and location oHhar templates.

4.3 Comparison of features

First of all, we compare the proposed HOOG features with Hdaar + EOH, and
HOG features on both shape detector and texture detectay asi Flickr cat data set.
For the Haar features, we use all four kinds of Haar templé&testhe EOH features,
we use default parameters suggested in [7]. For the HOGrésatwe usel x 4 cell
size which produces the best results in our experiments.
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Fig. 7. Comparison of Haar, Haar+EOH, HOG, and our features.

Figure 7 shows the performances of the four kinds of featdiles Haar feature on
intensity gives the poorest performance because of largpesand texture variations
of the cat head. With the help of oriented gradient featufesr + EOH improves the
performance. As one can expect, the HOG features perfotierloet the shape detector
than on the texture detector. Using both in-channel anagadhal-channelinformation,
the detectors based on our features produce the best results

shape detector texture detector

-

(¢) 60°, 150° () 30°, 120°

Fig. 8.Best features leaned by the AdaBoost. Left (shape dete(dphest Haar feature on image
intensity. (b) best in-channel feature. (c) best orthogéeature on orientation60° and 150°.
Right (texture detector): (d) best Haar feature on imagenisity. (€) best in-channel feature. (f)
best orthogonal-channel feature on orientati®dfsand120°.

In Figure 8, we show the best in-channel features in (b) afdafed the best
orthogonal-channel features in (c) and (f), learned by tetctors. We also show the
best Haar features on image intensity in Figure 8 (a) andridjoth detectors, the best
in-channel features capture the strength differencesdsatva region with strongest
horizontal gradients and its neighboring region. The bestogonal-channel features
capture the strength differences in two orthogonal origorta.

Inthe next experiment we investigate the role of in-chafestures and orthogonal-
channel features. Figure 9 shows the performances of thextdetusing in-channel



features only, orthogonal-channel features only, and kiotifs of features. Not surpris-
ingly, both features are important and complementary.
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Fig. 9. The importance of in-channel features and orthogonal+etldieatures.

4.4 Joint shape and texture detection

In this sub-section, we evaluate the performance of the jasion on the Flickr cat
data. To demonstrate the importance of decomposing shdgexunre features, we also
train a cat head detector using training samples alignedchbgpéimal rotation+scale
transformation for the comparison. Figure 10 shows four RDes: a shape detec-
tor, a texture detector, a head detector using optimal fmamation, and a joint shape
and texture fusion detector. Several important obsemaitan be obtained: 1) the per-
formance of fusion detector is substantially improved! Bogiven total false alarm
count 100, the recall is improved from 0.74/0.75/0.78 t&®20Qr the total false alarm
is reduced from 130/115/90 to 20, for a fixed recall 0.76. lageretrieval and search
applications, it is a very nice property since high precisi® preferred; 2) the head
detector using optimal transformation does not show sapg@erformance. The dis-
criminative abilities of both shape and texture featuresdacreased by the optimal
transformation; 3) the maximal recall value of the fusiotted®or (0.92) is larger than
the maximal recall values of three individual detectorg{00.82/0.85). This shows the
complementary abilities of two detectors - one detectorftahmany cat heads which
is difficult to the other detector; 4) note that the curve idun detector is very steep in
the low false alarm region, which means the fusion dete@oraifectively improve the
recall while maintain a very low false alarm rate.

The superior performance of our approach verifies a baséciidebject detection —
context helps! The fusion detector finds surrounding e\édda verify the detection re-
sult. In our cat head detection, when the shape detectortsspoat, the fusion detector
checks the surrounding shape information. If the textuteaer says it may be a cat,
we increase the probability to accept this cat. Otherwisedacrease the probability to
reject this cat.

Figure 12 gives some detection examples having variableaappce, head shape,
illumination, and pose.
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Fig. 10.Joint shape and texture detection.

4.5 Experiment on the PASCAL 2007 cat data

We also evaluate the proposed approach on the PASCAL 20@ata{2]. There are
two kinds of competitions for the detection task: 1) Comijati3 - using both training
and testing data from PASCAL 2007; 2) Competition 4 - usirgteary training data.
Figure 11 (a) shows the precision-recall curves of our apght@nd the best reported
method [2] on Competition 3. We compute the Average Pretiéfd) as in [2] for a
convenient comparison. The APs of our approach and the égstted method is 0.364
and 0.24, respectively. Figure 11(b) shows the precissmall curves on Competition
4. Since there is no reported result on Competition 4, we @epur approach with
the detectors using Haar, EOH, and HoG respectively. Akctets are trained on the
same training data. The APs of four detectors (ours, HOGrH&@H, Harr) are 0.632,
0.427,0.401, and 0.357. Using larger training data, theddieth performance is signif-
icantly improved. For example, the precision is improvenhfr0.40 to 0.91 for a fixed
recall 0.4. Note that the PASCAL 2007 cat data treat the whatéody as the object
and only small fraction of the data contain near frontal aaef However, our approach
still achieves reasonable good results (AP=0.632) on #rgchallenging data (the best
reported method’s AP=0.24).

5 Conclusion and Discussion

In this paper, we have presented a cat head detection sydlerachieved excellent
results by decomposing texture and shape features firstlyfuesing detection results
secondly. The texture and shape detectors also greatlyitfeom a set of new oriented
gradient features. Although we focus on the cat head deteptioblem in this paper,
our approach can be extended to detect other categoriesmélanin the future, we
are planing to extend our approach to multi-view cat headaiiein and more animal
categories. We are also interest in exploiting other canhinformation, such as the
presence of animal body, to further improve the performance
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Fig. 11. Experiments on PASCAL 2007 cat data. (a) our approach artdrégsrted method on
Competition 3 (specified training data). (b) four detectmmsCompetition 4 (arbitrary training
data).

Fig. 12. Detection results. The bottom row shows some detectedrc&@&$CAL 2007 data.
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