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Abstract. In this paper, we focus on the problem of detecting the head ofcat-like
animals, adopting cat as a test case. We show that the performance depends cru-
cially on how to effectively utilize the shape and texture features jointly. Specifi-
cally, we propose a two step approach for the cat head detection. In the first step,
we train two individual detectors on two training sets. One training set is normal-
ized to emphasize the shape features and the other is normalized to underscore
the texture features. In the second step, we train a joint shape and texture fusion
classifier to make the final decision. We demonstrate that a significant improve-
ment can be obtained by our two step approach. In addition, wealso propose a set
of novel features based on oriented gradients, which outperforms existing leading
features, e. g., Haar, HoG, and EoH. We evaluate our approachon a well labeled
cat head data set with 10,000 images and PASCAL 2007 cat data.

1 Introduction

Automatic detection of all generic objects in a general scene is a long term goal in im-
age understanding and remains to be an extremely challenging problem duo to large
intra-class variation, varying pose, illumination change, partial occlusion, and cluttered
background. However, researchers have recently made significant progresses on a par-
ticularly interesting subset of object detection problems, face [14, 18] and human de-
tection [1], achieving near 90% detection rate on the frontal face in real-time [18] using
a boosting based approach. This inspires us to consider whether the approach can be
extended to a broader set of object detection applications.

Obviously it is difficult to use the face detection approach on generic object de-
tection such as tree, mountain, building, and sky detection, since they do not have a
relatively fixed intra-class structure like human faces. Togo one step at a time, we need
to limit the objects to the ones that share somewhat similar properties as human face.
If we can succeed on such objects, we can then consider to go beyond. Naturally, the
closest thing to human face on this planet is animal head. Unfortunately, even for an-
imal head, given the huge diversity of animal types, it is still too difficult to try on all
animal heads. This is probably why we have seen few works on this attempt.

In this paper, we choose to be conservative and limit our endeavor to only one type
of animal head detection, cat head detection. This is of course not a random selection.



(a) cat-like animal (b) cats

Fig. 1.Head images of animals of the cat family and cats.

Our motivations are as follows. First, cat can represent a large category of cat-like an-
imals, as shown in Figure 1 (a). These animals share similar face geometry and head
shape; Second, people love cats. A large amount of cat imageshave been uploaded and
shared on the web. For example, 2,594,329 cat images had beenmanually annotated
in flickr.com by users. Cat photos are among the most popular animal photos on the
internet. Also, cat as a popular pet often appears in family photos. So cat detection can
find applications in both online image search and offline family photo annotation, two
important research topics in pattern recognition. Third, given the popularity of cat pho-
tos, it is easy for us to get training data. The research community does need large and
challenging data set to evaluate the advances of the object detection algorithm. In this
paper, we provide 10,000, well labeled cat images. Finally and most importantly, the cat
head detection poses new challenges for object detection algorithm. Although it shares
some similar property with human face so we can utilize some existing techniques, the
cat head do have much larger intra-class variation than the human face, as shown in
Figure 1 (b), thus is more difficult to detect.

Directly applying the existing face detection approaches to detect the cat head has
apparent difficulties. First, the cat face has larger appearance variations compared with
the human face. The textures on the cat face are more complicated than those on the
human face. It requires more discriminative features to capture the texture information.
Second, the cat head has a globally similar, but locally variant shape or silhouette. How
to effectively make use of both texture and shape information is a new challenging issue.
It requires a different detection strategy.

(a) (b) (c)

Shape Texture

Fig. 2. Mean cat head images on all training data. (a) aligned by ears. More shape information is
kept. (b) aligned by both eyes and ears using an optimal rotation+scale transformation. (c) aligned
by eyes. More texture information is kept.



To deal with the new challenges, we propose a joint shape and texture detection ap-
proach and a set of new features based on oriented gradients.Our approach is a two step
approach. In the first step, we individually train a shape detector and a texture detector
to exploit the shape and appearance information respectively. Figure 2 illustrates our
basic idea. Figure 2 (a) and Figure 2 (c) are two mean cat head images over all training
images: one aligned by ears to make the shape distinct; the other is aligned to reveal the
texture structures. Correspondingly, the shape and texture detectors are trained on two
differently normalized training sets. Each detector can make full use of most discrimi-
native shape or texture features separately. Based on a detailed study of previous image
and gradient features, e.g., Haar [18], HoG [1], EOH [7], we show that a new set of
carefully designed Haar-like features on oriented gradients give the best performance
in both shape and texture detectors.

In the second step, we train a joint shape and texture detector to fuse the outputs
of the above two detectors. We experimentally demonstrate that the cat head detection
performance can be substantially improved by carefully separating shape and texture
information in the first step, and jointly training a fusion classifier in the second step.

1.1 Related Work

Since a comprehensive review of the related works on object detection is beyond the
scope of the paper, we only review the most related works here.
Sliding window detection vs. parts based detection.To detect all possible objects in
the image, two different searching strategies have been developed. The sliding window
detection [14, 12, 18, 1, 17, 15, 20] sequentially scans all possible sub-windows in the
image and makes a binary classification on each sub-window. Viola and Jones [18]
presented the first highly accurate as well as real-time frontal face detector, where a
cascade classifier is trained by AdaBoost algorithm on a set of Haar wavelet features.
Dalal and Triggs [1] described an excellent human detectionsystem through training a
SVM classifier using HOG features. On the contrary, the partsbased detection [5, 13, 9,
6, 3] detects multiple parts of the object and assembles the parts according to geometric
constrains. For example, the human can be modeled as assemblies of parts [9, 10] and
the face can be detected using component detection [5].

In our work, we use two sliding windows to detect the “shape” part and “texture”
part of the cat head. A fusion classifier is trained to producethe final decision.
Image features vs. gradient features.Low level features play a crucial role in the
object detection. The image features are directly extracted from the image, such as in-
tensity values [14], image patch [6], PCA coefficients [11],and wavelet coefficients [12,
16, 18]. Henry et al.[14] trained a neural network for human face detection using the im-
age intensities in20×20 sub-window. Haar wavelet features have become very popular
since Viola and Jones [18] presented their real-time face detection system. The image
features are suitable for small window and usually require agood photometric normal-
ization. Contrarily, the gradient features are more robustto illumination changes. The
gradient features are extracted from the edge map [4, 3] or oriented gradients, which
mainly include SIFT [8], EOH [7], HOG [1], covariance matrix[17], shapelet [15], and
edgelet [19]. Tuzel et al. [17] demonstrated very good results on human detection using
the covariance matrix of pixel’s 1st and 2nd derivatives andpixel position as features.



Shapelet [15] feature is a weighted combination of weak classifiers in a local region. It
is trained specifically to distinguish between the two classes based on oriented gradients
from the sub-window. We will give a detailed comparison of our proposed features with
HOG and EOH features in Section 3.1.

2 Our Approach – Joint Shape and Texture Detection

The accuracy of a detector can be dramatically improved by first transforming the object
into a canonical pose to reduce the variability. In face detection, all training samples are
normalized by a rotation+scale transformation. The face isdetected by scanning all sub-
windows with different orientations and scales. Unfortunately, unlike the human face,
the cat head cannot be well normalized by a rotation+scale transformation duo to the
large intra-class variation.

In Figure 2, we show three mean cat head images over 5,000 training images by
three normalization methods. In Figure 2 (a), we rotate and scale the cat head so that
both eyes appear on a horizontal line and the distance between two ears is 36 pixels.
As we can see, the shape or silhouette of the ears is visually distinct but the textures in
the face region are blurred. In a similar way, we compute the mean image aligned by
eyes, as shown in Figure 2 (c). The textures in the face regionare visible but the shape
of the head is blurred. In Figure 2 (b), we take a compromised method to compute an
optimal rotation+scale transformation for both ears and eyes over the training data, in a
least square sense. As expected, both ears and eyes are somewhat blurred.

Intuitively, using the optimal rotation+scale transformation may produce the best
result because the image normalized by this method containstwo kinds of informa-
tion. However, the detector trained in this way does not showsuperior performance in
our experiments. Both shape and texture information are lost to a certain degree. The
discriminative power of shape features or texture featuresis hurt by this kind of com-
promised normalization.

2.1 Joint shape and texture detection

In this paper, we propose a joint shape and texture detectionapproach to effectively
exploit the shape and texture features. In thetraining phase, we train two individual
detectors and a fusion classifier:

1. Train a shape detector, using the aligned training imagesby mainly keeping the
shape information, as shown in Figure 2 (a); train a texture detector, using the
aligned training image by mainly preserving the texture information, as shown in
Figure 2 (c). Thus, each detector can capture most discriminative shape or texture
features respectively.

2. Train a joint shape and texture fusion classifier to fuse the output of the shape and
texture detectors.

In the detection phase, we first run the shape and texture detectors independently.
Then, we apply the joint shape and texture fusion classifier to make the final decision.
Specifically, we denote{cs, ct} as output scores or confidences of the two detectors,



and{fs, ft} as extracted features in two detected sub-windows. The fusion classifier is
trained on the concatenated features{cs, ct, fs, ft}.

Using two detectors, there are three kinds of detection results: both detectors re-
port positive at roughly the same location, rotation, and scale; only the shape detector
reports positive; and only the texture detector reports positive. For the first case, we
directly construct the features{cs, ct, fs, ft} for the joint fusion classifier. In the sec-
ond case, we do not have{ct, ft}. To handle this problem, we scan the surrounding
locations to pick a sub-window with the highest scores by thetexture detector, as il-
lustrated in Figure 3. Specifically, we denote the sub-window reported by the detector
as[x, y, w, h, s, θ], where(x, y) is window’s center,w, h are width and height, ands, θ
are scale and rotation level. We search sub-windows for the texture/shape detector in
the range[x±w/4]× [y±h/4]× [s± 1]× [θ± 1]. Note that we use real value score of
the texture detector and do not make 0-1 decision. The score and features of the picked
sub-window are used for the features{ct, ft}. For the last case, we compute{cs, fs} in
a similar way.

To train the fusion classifier, 2,000 cat head images in the validation set are used as
the positive samples, and 4,000 negative samples are bootstrapped from 10,000 non-cat
images. The positive samples are constructed as usual. The key is the construction of the
negative samples which consist of all incorrectly detectedsamples by either the shape
detector or the texture detector in the non-cat images. The co-occurrence relationship
of the shape features and texture features are learned by this kind of joint training. The
learned fusion classifier is able to effectively reject manyfalse alarms by using both
shape and texture information. We use support vector machine (SVM) as our fusion
classifier and HOG descriptors as the representations of thefeaturesfs andft.

 {cs, fs} {ct, ft} {ct, ft} {cs, fs}

(a) (b)

Fig. 3.Feature extraction for fusion. (a) given a detected sub-window (left) by the shape detector,
we search a sub-window (right, solid line) with highest score by the texture detector in sur-
rounding region (right, dashed line). The score and features {ct, ft} are extracted for the fusion
classifier. (b) similarly, we extract the score and features{cs, fs} for the fusion.

The novelty of our approach is the discovery that we need to separate the shape and
texture features and how to effectively separate them. The latter experimental results
clearly validate the superiority of our joint shape and texture detection. Although the
fusion method might be simple at a glance, this is exactly thestrength of our approach:
a simple fusion method already worked far better than previous non-fusion approaches.



3 Haar of Oriented Gradients

To effectively capture both shape and texture information,we propose a set of new
features based on oriented gradients.

3.1 Oriented gradients features

Given the imageI, the image gradient−→g (x) = {gh, gv} for the pixelx is computed as:

gh(x) = Gh ⊗ I(x), gv(x) = Gv ⊗ I(x), (1)

whereGh andGv are horizontal and vertical filters, and⊗ is convolution operator. A
bank of oriented gradients{gk

o}
K
k=1 are constructed by quantifying the gradient−→g (x)

on a number ofK orientation bins:

gk
o (x) =

{

|−→g (x)| θ(x) ∈ bink

0 otherwise
, (2)

whereθ(x) is the orientation of the gradient−→g (x). We call the imagegk
o oriented

gradients channel. Figure 4 shows the oriented gradients on a cat head image. Inthis
example, we quantify the orientation into four directions.We also denote the sum of
oriented gradients of a given rectangular regionR as:

Sk(R) =
∑

x∈R

gk
o (x). (3)

It can be very efficiently computed in a constant time using integral image technique [18].

Fig. 4. Oriented gradients channels in four directions.

Since the gradient information at an individual pixel is limited and sensitive to noise,
most of previous works aggregate the gradient information in a rectangular region to
form more informative, mid-level features. Here, we reviewtwo most successful fea-
tures: HOG and EOH.



HOG-cell. The basis unit in the HOG descriptor is the weighted orientation histogram
of a “cell” which is a small spatial region, e.g.,8 × 8 pixels. It can be represented as:

HOG-cell(R) = [S1(R), ..., Sk(R), ..., SK(R)]. (4)

The overlapped cells (e.g.,4 × 4) are grouped and normalized to form a larger spatial
region called “block”. The concatenated histograms form the HOG descriptor.

In Dalal and Triggs’s human detection system [1], a linear SVM is used to classify
a 64 × 128 detection window consisting of multiple overlapped16 × 16 blocks. To
achieve near real-time performance, Zhu et al. [21] used HOGs of variable-size blocks
in the boosting framework .
EOH. Levi and Weiss [7] proposed three kinds of features on the oriented gradients:

EOH1(R, k1, k2) = (Sk1(R) + ǫ)/(Sk2(R) + ǫ),

EOH2(R, k) = (Sk(R) + ǫ)/(
∑

j(S
j(R) + ǫ)),

EOH3(R, R, k) = (Sk(R) − Sk(R))/sizeof(R),

whereR is the symmetric region ofR with respect to the vertical center of the detection
window, andǫ is a small value for smoothing. The first two features capturewhether
one direction is dominative or not, and the last feature is used to find symmetry or the
absence of symmetry. Note that using EOH features only may beinsufficient. In [7],
good results are achieved by combining EOH features with Haar features on image
intensity.

Fig. 5.Haar of Oriented Gradients. Left: in-channel features. Right: orthogonal features.

3.2 Our features - Haar of Oriented Gradients

In face detection, the Haar features demonstrated their great ability to discover local
patterns - intensity difference between two subregions. But it is difficult to find dis-
criminative local patterns on the cat head which has more complex and subtle fine scale
textures. On the contrary, the above oriented gradients features mainly consider the
marginal statistics of gradients in a single region. It effectively captures fine scale tex-
ture orientation distribution by pixel level edge detection operator. However, it fails to
capture local spatial patterns like the Haar feature. The relative gradient strength be-
tween neighboring regions is not captured either.

To capture both the fine scale texture and the local patterns,we need to develop a
set of new features combining the advantage of both Haar and gradient features. Taking



a close look at Figure 4, we may notice many local patterns in each oriented gradients
channel which is sparser and clearer than the original image. We may consider that
the gradient filter separates different orientation textures and pattern edges into several
channels thus greatly simplified the pattern structure in each channel. Therefore, it is
possible to extract Haar features from each channel to capture the local patterns. For
example, in the horizontal gradient map in Figure 4, we see that the vertical textures
between the two eyes are effectively filtered out so we can easily capture the two eye
pattern using Haar features. Of course, in addition to capturing local patterns within a
channel, we can also capture more local patterns across two different channels using
Haar like operation. In this paper, we propose two kinds of features as follows:

In-channel features:

HOOG1(R1, R2, k) =
Sk(R1) − Sk(R2)

Sk(R1) + Sk(R2)
. (5)

These features measure the relative gradient strength between two regionsR1 andR2

in the same orientation channel. The denominator plays a normalization role since we
do not normalizeSk(R).

Orthogonal-channel features:

HOOG2(R1, R2, k, k∗) =
Sk(R1) − Sk∗

(R2)

Sk(R1) + Sk∗(R2)
, (6)

wherek∗ is the orthogonal orientation with respect tok, i.e.,k∗ = k +K/2. These fea-
tures are similar to the in-channel features but operate on two orthogonal channels. In
theory, we can define these features on any two orientations.But we decide to compute
only the orthogonal-channel features based on two considerations: 1) orthogonal chan-
nels usually contain most complementary information. The information in two channels
with similar orientations is mostly redundant; 2) we want tokeep the size of feature pool
small. The AbaBoost is a sequential, “greedy” algorithm forthe feature selection. If the
feature pool contains too many uninformative features, theoverall performance may
be hurt. In practice, all features have to be loaded into the main memory for efficient
training. We must be very careful about enlarging the size offeatures.

Considering all combinations ofR1 andR2 will be intractable. Based on the success
of Haar features, we use Haar patterns forR1 andR2, as shown in Figure 5. We call the
features defined in (5) and (6), Haar of Oriented Gradients (HOOG).

4 Experimental Results

4.1 Data set and evaluation methodology

Our evaluation data set includes two parts, the first part is our own data, which includes
10,000 cat images mainly obtained from flickr.com; the second part is from PASCAL
2007 cat data, which includes 679 cat images. Most of our own cat data are near frontal
view. Each cat head is manually labeled with 9 points, two foreyes, one for mouth,
and six for ears, as shown in Figure 6. We randomly divide our own cat face images
into three sets: 5,000 for training, 2000 for validation, and 3,000 for testing.We follow



the PASCAL 2007 original separations of training, validation and testing set on the cat
data. Our cat images can be downloaded from http://mmlab.ie.cuhk.edu.hk/ for research
purposes.

Fig. 6. The cat head image is manually labeled by 9 points.

We use the evaluation methodology similar to PASCAL challenge for object detec-
tion. Suppose the ground truth rectangle and the detected rectangle arerg andrd, and
the area of those rectangles areAg andAd. We say we correctly detect a cat head only
when the overlap ofrg andrd is larger than 50%:

D(rg, rd) =

{

1 if (Ag∩Ad)
(Ag∪Ad) > 50% ,

0 otherwise
, (7)

whereD(rg, rd) is a function used to calculate detection rate and false alarm rate.

4.2 Implementation details

Training samples.To train the shape detector, we align all cat head image with respect
to ears. We rotate and scale the image so that two tips of ears appear on a horizontal line
and the distance between two tips is 36 pixel. Then, we extract a48 × 48 pixel region,
centered 20 pixels below two tips. For the texture detector,a 32 × 32 pixel region is
extracted. The distance between two eyes is 20 pixel. The region is centered 6 pixel
below two eyes.
Features.We use 6 unsigned orientations to compute the oriented gradients features.
We find the improvement is marginal when finer orientations are used. The horizontal
and vertical filters are[−1, 0, 1] and[−1, 0, 1]T . No thresholding is applied on the com-
puted gradients. For both shape and texture detector, we construct feature pools with
200,000 features by quantifying the size and location of theHaar templates.

4.3 Comparison of features

First of all, we compare the proposed HOOG features with Haar, Haar + EOH, and
HOG features on both shape detector and texture detector using our Flickr cat data set.
For the Haar features, we use all four kinds of Haar templates. For the EOH features,
we use default parameters suggested in [7]. For the HOG features, we use4 × 4 cell
size which produces the best results in our experiments.
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Fig. 7.Comparison of Haar, Haar+EOH, HOG, and our features.

Figure 7 shows the performances of the four kinds of features. The Haar feature on
intensity gives the poorest performance because of large shape and texture variations
of the cat head. With the help of oriented gradient features,Haar + EOH improves the
performance. As one can expect, the HOG features perform better on the shape detector
than on the texture detector. Using both in-channel and orthogonal-channel information,
the detectors based on our features produce the best results.

(a) (b) 0o (d) (e) 0o

(c) 60o, 150o (f) 30o, 120o

shape detector texture detector

Fig. 8.Best features leaned by the AdaBoost. Left (shape detector): (a) best Haar feature on image
intensity. (b) best in-channel feature. (c) best orthogonal feature on orientations60o and150

o.
Right (texture detector): (d) best Haar feature on image intensity. (e) best in-channel feature. (f)
best orthogonal-channel feature on orientations30

o and120
o.

In Figure 8, we show the best in-channel features in (b) and (e), and the best
orthogonal-channel features in (c) and (f), learned by two detectors. We also show the
best Haar features on image intensity in Figure 8 (a) and (d).In both detectors, the best
in-channel features capture the strength differences between a region with strongest
horizontal gradients and its neighboring region. The best orthogonal-channel features
capture the strength differences in two orthogonal orientations.

In the next experiment we investigate the role of in-channelfeatures and orthogonal-
channel features. Figure 9 shows the performances of the detector using in-channel



features only, orthogonal-channel features only, and bothkinds of features. Not surpris-
ingly, both features are important and complementary.
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Fig. 9. The importance of in-channel features and orthogonal-channel features.

4.4 Joint shape and texture detection

In this sub-section, we evaluate the performance of the joint fusion on the Flickr cat
data. To demonstrate the importance of decomposing shape and texture features, we also
train a cat head detector using training samples aligned by an optimal rotation+scale
transformation for the comparison. Figure 10 shows four ROCcurves: a shape detec-
tor, a texture detector, a head detector using optimal transformation, and a joint shape
and texture fusion detector. Several important observations can be obtained: 1) the per-
formance of fusion detector is substantially improved! Fora given total false alarm
count 100, the recall is improved from 0.74/0.75/0.78 to 0.92. Or the total false alarm
is reduced from 130/115/90 to 20, for a fixed recall 0.76. In image retrieval and search
applications, it is a very nice property since high precision is preferred; 2) the head
detector using optimal transformation does not show superior performance. The dis-
criminative abilities of both shape and texture features are decreased by the optimal
transformation; 3) the maximal recall value of the fusion detector (0.92) is larger than
the maximal recall values of three individual detectors(0.77/0.82/0.85). This shows the
complementary abilities of two detectors - one detector canfind many cat heads which
is difficult to the other detector; 4) note that the curve of fusion detector is very steep in
the low false alarm region, which means the fusion detector can effectively improve the
recall while maintain a very low false alarm rate.

The superior performance of our approach verifies a basic idea in object detection –
context helps! The fusion detector finds surrounding evidence to verify the detection re-
sult. In our cat head detection, when the shape detector reports a cat, the fusion detector
checks the surrounding shape information. If the texture detector says it may be a cat,
we increase the probability to accept this cat. Otherwise, we decrease the probability to
reject this cat.

Figure 12 gives some detection examples having variable appearance, head shape,
illumination, and pose.
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4.5 Experiment on the PASCAL 2007 cat data

We also evaluate the proposed approach on the PASCAL 2007 catdata [2]. There are
two kinds of competitions for the detection task: 1) Competition 3 - using both training
and testing data from PASCAL 2007; 2) Competition 4 - using arbitrary training data.
Figure 11 (a) shows the precision-recall curves of our approach and the best reported
method [2] on Competition 3. We compute the Average Precision (AP) as in [2] for a
convenient comparison. The APs of our approach and the best reported method is 0.364
and 0.24, respectively. Figure 11(b) shows the precision-recall curves on Competition
4. Since there is no reported result on Competition 4, we compare our approach with
the detectors using Haar, EOH, and HoG respectively. All detectors are trained on the
same training data. The APs of four detectors (ours, HOG, Haar+EOH, Harr) are 0.632,
0.427, 0.401, and 0.357. Using larger training data, the detection performance is signif-
icantly improved. For example, the precision is improved from 0.40 to 0.91 for a fixed
recall 0.4. Note that the PASCAL 2007 cat data treat the wholecat body as the object
and only small fraction of the data contain near frontal cat face. However, our approach
still achieves reasonable good results (AP=0.632) on this very challenging data (the best
reported method’s AP=0.24).

5 Conclusion and Discussion

In this paper, we have presented a cat head detection system.We achieved excellent
results by decomposing texture and shape features firstly and fusing detection results
secondly. The texture and shape detectors also greatly benefit from a set of new oriented
gradient features. Although we focus on the cat head detection problem in this paper,
our approach can be extended to detect other categories of animals. In the future, we
are planing to extend our approach to multi-view cat head detection and more animal
categories. We are also interest in exploiting other contextual information, such as the
presence of animal body, to further improve the performance.
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Fig. 11.Experiments on PASCAL 2007 cat data. (a) our approach and best reported method on
Competition 3 (specified training data). (b) four detectorson Competition 4 (arbitrary training
data).

Fig. 12.Detection results. The bottom row shows some detected cats in PASCAL 2007 data.



References

1. Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
CVPR, volume 1, pages 886–893, 2005.

2. Mark Everingham, Luc van Gool, Chris Williams, John Winn,and Andrew Zisserman. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

3. Pedro F. Felzenszwalb. Learning models for object recognition. In CVPR, volume 1, pages
1056–1062, 2001.

4. Dariu M. Gavrila and Vasanth Philomin. Real-time object detection for smart vehicles. In
CVPR, volume 1, pages 87–93, 1999.

5. Bernd Heisele, Thomas Serre, Massimiliano Pontil, and Tomaso Poggio. Component-based
face detection. InCVPR, volume 1, pages 657–662, 2001.

6. Bastian Leibe, Edgar Seemann, and Bernt Schiele. Pedestrian detection in crowded scenes.
In CVPR, volume 1, pages 878–885, 2005.

7. Kobi Levi and Yair Weiss. Learning object detection from asmall number of examples: the
importance of good features. InCVPR, volume 2, pages 53–60, 2004.

8. David G. Lowe. Object recognition from local scale-invariant features. InICCV, volume 2,
pages 1150–1157, 1999.

9. Krystian Mikolajczyk, Cordelia Schmid, and Andrew Zisserman. Human detection based on
a probabilistic assembly of robust part detectors. InECCV, volume 1, pages 69–82, 2004.

10. Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio. Example-based object detec-
tion in images by components.IEEE Trans. Pattern Anal. Machine Intell., 23(4):349–361,
April 2001.

11. Stefan Munder and Dariu M. Gavrila. An experimental study on pedestrian classification.
IEEE Trans. Pattern Anal. Machine Intell., 28(11):1863–1868, November 2006.

12. Constantine Papageorgiou and Tomaso Poggio. A trainable system for object detection.Intl.
Journal of Computer Vision, 38(1):15–33, 2000.

13. Remi Ronfard, Cordelia Schmid, and Bill Triggs. Learning to parse pictures of people. In
ECCV, volume 4, pages 700–714, 2004.

14. Henry A. Rowley, , Shumeet Baluja, and Takeo Kanade. Neural network-based face detec-
tion. IEEE Trans. Pattern Anal. Machine Intell., 20(1):23–38, 1998.

15. Payam Sabzmeydani and Greg Mori. Detecting pedestriansby learning shapelet features. In
CVPR, 2007.

16. Henry Schneiderman and Takeo Kanade. A statistical method for 3d object detection applied
to faces and cars. InCVPR, volume 1, pages 746–751, 2000.

17. Oncel Tuzel, Fatih Porikli, and Peter Meer. Human detection via classification on riemannian
manifolds. InCVPR, 2007.

18. Paul Viola and Michael J. Jones. Robust real-time face detection. Intl. Journal of Computer
Vision, 57(2):137–154, May 2004.

19. Bo Wu and Ram Nevatia. Detection of multiple, partially occluded humans in a single image
by bayesian combination of edgelet part detectors. InICCV, volume 1, pages 90–97, 2005.

20. Rong Xiao, Huaiyi Zhu, He Sun, and Xiaoou Tang. Dynamic cascades for face detection. In
ICCV, volume 1, pages 1–8, 2007.

21. Qiang Zhu, Shai Avidan, Mei-Chen Yeh, and Kwang-Ting Cheng. Fast human detection
using a cascade of histograms of oriented gradients. InCVPR, volume 2, pages 1491–1498,
2006.


