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Abstract

For the problem of image registration, the top few relialderespondences are often relatively easy to obtain,
while the overall matching accuracy may fall drasticallythe desired correspondence number increases. In this
paper, we present an ef cient feature matching algorithrartgploy sparse reliable correspondence priors for piloting
the feature matching process. First, the feature geonretetonship within individual image is encoded as a spatia
graph, and the pairwise feature similarity is expressed ipartite similarity graph between two feature sets; then
the geometric neighborhood of the pairwise assignmentgeesented by a categorical product graph, along which
the reliable correspondences are propagated; and nalljosed-form solution for feature matching is deduced
by ensuring the feature geometric coherency as well as s&irfgature agreements. Furthermore, our algorithm is
naturally applicable for incorporating manual correspemak priors for semi-supervised feature matching. Extensi
experiments on both toy examples and real-world applinatdiemonstrate the superiority of our algorithm over the
state-of-the-art feature matching techniques.
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. INTRODUCTION

Feature matching of two objects is a fundamental problenedomputer vision research, and a variety of computer
vision tasks heavily rely on the feature matching resulighsas object tracking [11] and recognition [15] [14],
image warping [3] and stitching [7], an8D reconstruction [2] [16] [1]. The feature matching accyrawcay be
affected by various factors including feature descriptemnilarity measurements, and matching approaches.

Substantive works have been devoted to seeking the comdspoes between features extracted from two images.
Among them, recently Grauman et al. [10] considers the infagtures as unordered elements in sets of different
cardinalities and proposes a pyramid matching algorithnptosuing inexact correspondences. Local feature plays
an important role in this task, and the popular feature detecsuch as SIFT [14], salient region detector [12],
as well as scale and af ne invariant interest point dete¢idf], tend to output interest points or regions in a
structured way. Also, it is observed that the salient poamd SIFT features extracted from the images with similar
structures often share similar local spatial distribusiorhus the feature location also conveys important inféiona
for feature matching. The works in [6] [20] and [18] preseppeaches for utilizing structure information. They
formulate the feature matching problem with integer quéciarogramming (IQP) or Semide nite Programming
(SDP) techniques, and hence severely suffer from the highpatational cost. Leordeanu et al. [13] proposes a
spectral analysis method for promoting feature matchinguecy with the geometric structure information and
designs an iterative procedure to eliminate the con ictia@among the derived correspondences. [9] adds af ne
constraints to the spectral matching formulation and psepa normalization procedure to improve the matching
accuracy.

One common issue encountered by all above feature matchgogthms is that the top few matches with the
highest similarities are often very accurate, but the matchccuracy falls rapidly when the desired match number
increases, especially for data with noises. Another issiséng in real-world applications is that the unsupervised
feature matching algorithms often cannot provide suf ¢igrmccurate results for the subsequent applications such
as image stitching and object recognition. A natural qoess how to incorporate extra clues for promoting feature
matching performance. In this work, we present a solutionféature matching with theeliable correspondence
priors, from the top few reliable correspondences obtained byeeitonventional feature matching algorithms or
manual labeling.

First, the relative geometric relation of the feature paiithin an image is encoded as a spatial graph, and the
matching assignments are considered as the vertices ofrdldeiq graph constructed from two spatial graphs of
the images to be matched. Then, based on the these spaiiadne| the assignment neighborhoods are de ned on

the product graph and the point-to-point matchings are grepagated from those reliable correspondences to the
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Fig. 1. Flowchart of correspondence propagation from béiaorrespondence priors for feature matching.

remaining ones. Finally, we deduce an ef cient closed-fawmiution for the feature matching problem by ensuring
both spatial consistency and feature similarity agreement

The works in [13], [6] and [18] also try to employ the featuoedtion information for matching, while our work in

this paper differs from them in that we make full use of the@infation provided by those reliable correspondences.
Moreover, bene tting from the propagation property, owarfrework is easy to incorporate human interactions for
the guidance of correspondence searching. An illustradfaime whole framework for correspondence propagation
from reliable correspondence priors is displayed in Figlire

Here, we would like to highlight some aspects of our propoRetlable Correspondence Propagation (RCP)

algorithm:

1) RCP makes full use of the prior information of the spardialbée correspondences, and is naturally applicable
for incorporating the interactive manual labeling to ferttpromote feature matching accuracy in a semi-
supervised way.

2) The algorithmic objective provides a uni ed formulatiazghat employs both the categorical product graph
constructed from two spatial graphs for characterizingiapeoherency and the bipartite similarity graph for
representing feature similarity agreements.

3) A closed-form solution is deduced with comparably low potational cost, and hence our algorithm is

applicable to real-world image registration problems.



[l. PROBLEM FORMULATION AND SOLUTION
A. Notations and Graph Construction

The two sets of features, e.g. extracted from SIFT [15], wittwo images to be matched are denoted as

Y=f % %o Yigand 2=1 2 Zion Zogwith K= ff X xKg, wheref X is the feature vector anxk is
the feature point location in thie" image k 2 f 1; 2g).

Let GK = (VK;EK) be an undirected spatial graph with vertex ¥étand edge seEX for the k" image. The
edges inEX re ect the geometric neighboring relations among the fesgpand can be de ned in terms kf
nearest-neighbor or anball distance criteria in the feature position space. In addjtem adjacency/weight matrix

WK is de ned for the graptGK. One way to compute the weight matrix is directly based onettige information,

namely 3 .y )
<1 if xi and xj are connected

0 else

There are also other ways for computing the similarity matsuch as the heat kernel [4], i.ev-,‘} —e 7,
wheret 2 R is a parameter to de ne the heat kernel.

To encode the pairwise feature similarity between two sktsaiures, we introduce the similarity graph, denoted
as a tripletG*? = (1, 2,E'). The similarity graphG!? is a bipartite graph, and the weight mat@xof G2

are computed from the cosine distances of the feature paesuned in the feature vector space.

B. Regularization on Categorical Product Graph

The feature matching process can be considered as seekingrg function over the product set of* and 2:
M: 1 21f 01g;

where denotes the set product and the function vdlueeans matching an@for mismatching. To transduce the
matching assignment from the reliable correspondencespacthe other feature pairs, we rst give a neighborhood

de nition for the matching assignments.

De nition: Suppose 1= f 1; 1::: ilng and 2=1f 2; 2. ?Nzg are the vertices of grapB! and G?

117 12 11 12

respectively. Two assignments;,;, = f 1; 2gandm;,;, = f !; 2g are neighbors iff both pairs {; *g

P jir e

127

andf Z; ?gare neighbors irG' andG? respectively, namely,

2

12

2

o . 1 1 )
Mii, S Mj,j, | . s j, and s i (1)

1

wherea s b meansa andb are neighbors on the corresponding graph.
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Fig. 2. Demonstration of categorical graph product: gr&ah graphG., and their categorical graph produét G

Suppose binary weights are utilized. According to the diomi (1), the assignment grafb? is the categorical

product graph ofc! andG?, i.e.,,G® = G! G2, and the adjacency of the assignments can be expressed as:

a — wl 2 .
Migi,Migj, Wul LW e @)

An example of the categorical product graph is demonstrismiddgure 2.

De ned on the space of Cartesian product set, the assignMermain be regarded as a binary matrixNf by

No, i.e.,
0 1
mqq Mmio e min,
M = % Maw Mzz o Man, §;mij 210,19 (3)
Myn,1 Mn,2 2 MygN,

where the elementm;; corresponds to the assignment df to 12 To facilitate the solution, we arrange the

columns ofM consequently to construct a vectdr, i.e.,
N =vedM) = [ mqq; Mag; i My, 1; Mi2; Moy;
SL MG 25 L MaN, MoN, ;S MNG N, (4)

whereveq ) is the vectorization operator.
Now the assignment is converted into a function onthél, dimensional vector space and thus the adjacency

matrix W2 of the assignments is ad1N, by N1N, matrix, i.e.,
wa=waT  wh (5)

where is the Kronecker product operator and the correspondinghg® is the categorical product graph 6ft
andG?. Note that the adjacency matrix of the categorical produaply can also be de ned a§2 = Wt W?2if
we rearrange the sequence of assignments while here wethdopt de nition so that the assignment arrangement
is coherent with that off . When thew! andW? are not binary, the adjacency matiiX? calculated from (5)
can still capture the relative geometric relations of theigrenents.

To introduce a spatial consistency for the assignments, akenthe assumption that the neighboring vertices

on the categorical product graph share similar assignmaloies. This is quite natural in the representation of



structural feature sets, since in real-world applicatidhe feature points that constitute certain kind of strregu
are often extracted together and thus the features are witechedsetby set Emphasizing this assumption can
also transduce theeliable correspondence priorderived from manual labeling or automatic approaches to the
neighboring assignments and then the assignments aregategaalong the categorical product graph until a nal
balance is drawn.

In our framework, the spatial consistency assumption idlddl by a graph Laplacian penalty item in the
objective. According to the spectral graph theory [5] [18$nalizing the Graph Laplacian leads to a solution with
the locality preserving property. The Graph Laplacian carekpressed as:

MTLam T = }X w2
2 l
]

(m{  mf)?

wheremY is the i element of M, L8 = D® W2 is the Laplacian matrix of the categorical product graph
P
andD? is a diagonal matrix wittD# =~ ; Wi, If m{ andm;’ are adjacent in the graph, i.e., thg is large,

the minimizing of the objective will lead to a small distanbetweenmy and mY

i/, and then the reliable prior

correspondence can be propagated along with this spatiaistency property.

C. Consistency in Feature Domain and Soft Constraints

Besides the geometric consistency, we also emphasize teartce in the feature domain. The pairwise feature
agreement is encoded by tiNy by N» adjacency matrixS of the similarity graphG*2. The coherence of the

feature similarity is then converted into the maximizatifritem,

iS Mijs=vedS) vedM)= S™NI;
writ: my 2f0;1g; (6)

where is the matrix Hardamard produg#js returns the sum of all the elements in ma#ixS is the vectorization
of the matrixS, and the operatoris the inner product of two vectors.

Finally, for those one-to-one correspondence con guretja soft penalty is introduced, i.e.,
X X
(AL Mijs 1%+ (A, Mjs 1% (7
i=1 i=1
whereAl is anN; by N, coef cient matrix with 1 in thei" row and0 for others;Al, is anN; by N, coef cient
matrix with 1 in the i column and0 for other elements. The rst term tends to matching eachufesin the rst
image to a feature with the largest similarity in the second,@nd the second term tends to matching each feature

in the second image with a feature with the highest simjlaritthe rst one.



Vectorizing the coef cient matriced\; and A, and arranging the derived column vectors, we construct the

constraint coef cient matrice®; and A5:
R1(;i) = vedAl); As(;i) = veqA):
Then the item (7) can be expressed as:

Tr((AIM  en,)"(AIM  en,))

+ Tr((AIM en,) (AIM en,)):; ®)

whereA; = ey, In, is anNiNy by N3 matrix, A2 = Iy, en, is anNiN, by N, matrix, ey is an N

1

dimensional column vector df andly is anN by N identity matrix.

Note that for the one-to-one correspondence, we can alsosienpard constraints, i.e.,

ATM = ey, or AT = ey,; 9)

1

but these conditions may not be satis ed, since the featute@ed in one image may not have a correspondence
in the other image due to the noise, occlusion or the inetyualithe feature set cardinality. Thus we adopt a soft

penalty in the objective and the af ne constraints are cqasetly removed from the formulation.

D. Inhomogeneous Pair Labeling

Since the one-to-one matching is optimized on the prodwgtlgof the two input graphs, the number of variables
can be extremely large and it grows rapidly with the increafsthe input vertex number. The number of features
extracted depends on various factors such as the featurecexs, the complexity of surroundings, the scales
searched for maximum and the size of images. Generallys$igrament variables are highly redundant. Substantive
assignment variables are dispensable due to the low sityjilar, large feature distances between the involved featu
pairs. We call these assignmeintiomogeneous pairfRkather than simply removing them, in our framework the
mismatchinformation of those inhomogeneous pairs is also emplo$péci cally, they are assigned &s, which

indicate that the corresponding feature pairs will not becimed, i.e.,

Mij = Miu; o n, ( OFFF 1 2g2 (10)

where is the set of inhomogeneous pairs. Then thiematchinformation of those inhomogeneous pairs is also

utilized to guide the solution and transduced to the remgimines.



E. Reliable Correspondence Propagation

In the following the known correspondences including soml@lble correspondences and certain nhumber of
inhomogeneous pairs are called labeled assignments dethfeature pairs. We arrange the matching variables so

that the labeled assignments are placed ahead, i.e.,
Moo= M N (11)

whereNt! represents the assignments of the labeled feature paits;orresponds to the assignment values of the
remaining unlabeled feature pairs to be estimak#d.is the rearranged assignment vector.
Correspondingly, the constraint coef cient matrigks, A, and the vectorized adjacency matgof the similarity

graph are also rearranged, so that,
R =[A; A A, =[AL; A, ands =[S';8Y]; (12)

whereA!, AL, andS' are the coef cients and vectorized adjacency sub-matrihefsimilarity graph for the labeled

assignments respectivelé?g, 5, andS" are the coef cients and vectorized adjacency sub-matnixtie unlabeled

assignments; an&l, /Qz, andS are the rearranged coef cients and vectorized similariigpdp adjacency matrix.
Due to the variable rearrangement, the vertex order in thiegoacal product graph is also modied. The

rearranged adjacency mathé¥? and the corresponding Laplacian matti® are

wa Wwa a a
a — I lu Sl a = Il lu .
W Wj‘l Wt?u b Lﬁl Lau . (13)

Integrating all factors and we get the nal optimization fauwlation for our feature matching framework:

min STV + N TL2M +

T
(Tr(A™  en)T(ATM en)))
FTr(ATM en) ATV en,))
wrrt: m; 2f0;1g; i 211,25 N1N2g (14)
wherem; is thei" element ofM , and are coefcients controlling the balance among feature kirity,

spatial coherency and one-to-one penalty.
We relax the binary integer optimization problem to realueal by discarding the constraints in (14) and the
formulation is converted to an unconstrained quadratiéndpation. Take the derivative w.r.¥ and substitute

the equation (11), we obtain a closed-form relation betwenabeled and unlabeled assignments:

MY=C,l(B, CuMm'); (15)



Algorithm 1 Elicit k correspondences. [Input: M]

1. Output the correspondenoe; = f [, fg=argmax 1 : M.
2: Remove fromM all potential assignments in con ict witm; .
3: If column or row dimension oM become® or if the output correspondence number readhesop; otherwise,

go back to stef.

where
CII Clu
C= Cul Ccuu
= (AAT+ KA+ L 12 (16)
and
Bl
B BU
1
= (Ren, + Aoey,) + 5S (17)

F. Rearrangement and Discretizing

To get the original assignmeM , we rst take the inverse process of the element arrangeesitribed above
and converi to M, then reshape the derived assignment vector intdlthky N, matrix M . Since the assignment
variables have been relaxed, we tried two discretizatioategyies: thresholding and eliciting. Setting a threshold
for discretization is natural and it can determine the apomdence number automatically. This strategy is also
suitable for the cases in which the correspondences areeqoired to be one-to-one. On the other hand, in case a
xed number of one-to-one correspondences are needed, sigrdan iterative correspondence eliciting procedure,
which is displayed in Algorithm 1. Finally the whole algdmihic process is listed in Algorithr.

[1l. ALGORITHMIC ANALYSIS
A. Selection of Reliable Correspondences

The accuracy of those reliable correspondences are trfticanal performance. One way to obtain these
reliable correspondences in the automatic matching caagon is simply to pick up a few pairs with the highest
similarity scores while the correspondences derived imway may be clustered together and their guidance for the
correspondence searching is thus limited. The work [8] pseg an Adaptive Non-Maximal Suppression (ANMS)
strategy to elicit a xed number of interest features andre same time keep the the selected interest points
spatially well distributed. In this paper, we adopt the @spondence Elicit Procedure described in Algorithm

and the rst several correspondences produced are regé&vdaal reliable in the automatic matching con guration.
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Algorithm 2 Reliable Correspondence Propagation

1: Graph Construction: Contruct the spatial graph8! and G? from the feature locations and calculate the
adjacency matrix for the categorical product graph usMgy= W2T  W?. Construct the bipartite similarity
graphG?'? according pairwise feature similarity.

2: Constraint Coef cient Matrix Initialization: Initialize the constraint coef cient matrice®; andA, according
to the cardinality of input feature sets.

3: Assignment Labeling: Initialize the corresponding assignments for those rédigiairs asl and set the
assignment variables @sfor those inhomogeneous pairs with low similarity values.

4. Correspondence Propagation:Rearrange the assignment variables, the adjacency nsttitze constraint
coef cient matrices so that the labeled assignments areeplan front of the unlabeled variables and calculate
the closed-form solution in (15).

5. Rearrangement: Take the inverse process of the arrangement in 4tepd get the correspondences using the

strategies described in Sec-II.F.

The transductive property of our algorithm makes it easytoiporate human interactions for the correspondence
searching and a semi-supervised matching framework isalitaerived. In this work, two con gurations of human
interactions are used:

Exact Pairwise Correspondence Labelingin this con guration, the users are asked to give exacteggondence
labeling for the guidance of matching, and the assignmettsiéd by human are used as reliable correspondence
priors in the feature matching process.

Obscure Correspondence GuidanceTo facilitate the user labeling, we also provide an obsouagching scheme
in which the user only has to describe a rough correspondafringage parts. The procedures used in the automatic
matching con guration are then employed to extract rekabbrrespondences within the indicated corresponding

areas.

B. Computational Complexity

The complexity of the inverse operation for arby n matrix is O(n®), which is greater than the spectral algo-
rithms ©(n?)). However, the matrixC,, in our algorithm is sparse and exploiting this sparsity, tbenputational
cost can be greatly reduced. Also, ef cient parallel algoris exist for the gaussian elimination procedure in the
computation of the sparse matrix inversion problem and thesomputation time can be further shortened. Another
factor affecting the computation cost is the candidate matcvariable number, which determines the dimension

of the matrixCy,. In our experiments6000assignments with the largest similarity scores are fet@wehatching
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Fig. 3. Oxford real Image Transformation Database. Thesfoamations include viewpoint variation ((a) Graf ti (b) &l sequence), image
blur ((c) bikes and (d) trees sequence), zoom and rotatienk@rk and (f) boat sequence), illumination change ((gydael and JPEG
compression ((h) UBC).

candidates and the variable number can be adjusted acgdadihe requirement of the applications. Our algorithm

is much faster than the QP and SDP based algorithms and ieaplpl for the large scale real-world applications.
V. APPLICATIONS AND EXPERIMENTS

In this section, our algorithm is systematically evaluaitedwo settings: unsupervised and semi-supervised. In
the unsupervised setting, those reliable correspondemeesgerived automatically; while in the semi-supervised
setting, the reliable correspondence priors are labelatuaily. In all the experiments, the SIFT [14] descriptor is

used for feature extraction and representation; the $gat@h is constructed usint0O-nearest neighbors and the
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weights for the spatial graphs are calculated using heatekeK (x;y) = expfk x  yk?= 2g with parameters

o =2%25 applied, where is the standard deviation of the feature locations. For iméarity graph,16 nearest
neighbors are used and the cosine distance is directly st#waraph weight. The coef cient is empirically set
as0:4 and is set a9):05. In the inhomogeneous pair labeling process, we &) pairs with the top similarities

as candidate matchings and others are lab@&lfthe performance of our algorithm is systematically coragawith

the state-of-the-art feature matching algorithms, sucthasspectral correspondence technique (SC) [13] and the
matching algorithm used in [14] (SM), which compares theadise of the closest neighbor to that of the second-
closest neighbor. We take tiy by N, pairwise similarity matrix as the inpi for the Correspondence Eliciting
Procedure (CE) and the matching scores are also reportedQPhand SDP based algorithms are inapplicable for
comparison due to the large number of features involvedthiadjacency matrik in the spectral correspondence
technigue [13], we assign a score that is linearly increpsiith the cosine distance between the feature and its
candidate corresponding feature to the diagonal elemémteShe adjacency matrix of the categorical product
graph in our algorithm represents the geometrical relatminassignments, the non-diagonal elementMois set

using the corresponding elementsWh.

A. Automatic Feature Matching on Oxford Image TransfororatDatabase

In this subsection, the unsupervised version of our algaris evaluated on the Oxford real image transformation
databast The Oxford database is a benchmark database for the fedéseiptor evaluation. It contains eight
subsets for six different geometric and photometric realgentransformations, including zoom, rotation, viewpoint
change, image blur, JPEG compression, and light variafism different scene types are involved for the case
of rotation, viewpoint change, and blur: one contains hoemegus regions with distinctive edge boundaries and
the other contains repeated textures of different formdchvFacilitates us to analyze the effect of changing the
image conditions and the scene type separately. Some iniagedord database are demonstrated in Figure 3.
The image width and height are resizedlt of the original ones and for each imadd)0-500 SIFT descriptors
are extracted. Since the homographies between the reéemerage and other images in each particular subset are
given, we can derive the ground truth matches for the evaluat

40-180 assignments are extracted as the reliable correspondesaes Algorithm 1 in the evaluation. The
matching score is calculated as the ratio between the nuofbmrrect matches and the smaller value of detected
feature numbers from the image pair. The detailed resuétsdamonstrated in Figure 4-7. It is observed that our
algorithm generally reaches a higher accuracy compardu thé state-of-the-art techniques and the algorithmic
performance is stable over all the subsets. Although in ssitnation such as the JPEG compression the spectral

http://www.robots.ox.ac.uk/ vgg/ research/af ne.
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technigue shows an excellent performance, it is not soestabinost cases.

Though the spectral based technique also employs geonmgfioionation as well as feature similarity in the
matching process, our algorithm generally produces atbptdormance. The main reason is that our algorithm
essentially puts different weights on the correspondenceéisthe reliable correspondences are emphasized, while

this information is ignored in other state-of-the-art teatmatching algorithms.

B. In uence of Reliable Correspondence Number

In the unsupervised con guration, the performance of owgodthm relies on the accuracy of the reliable
correspondences, which also deteriorates as the corm@spoa number increases. It is interesting and neces-
sary to evaluate the performance of our algorithm with respe the number of automatically selectesliable
correspondences. Figure 8 shows the correct matching rnuwdssus the number of reliable correspondences

automatically derived. We can observe that the correctimaticnber increases along with the increase of the reliable
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Fig. 7. Automatic feature matching score on (a) leuven flomiination variation and (b) UBC for JPEG compression.

correspondence number within a reasonable range, and likeacturacy falls when the reliable correspondence

number becomes too large to give an accurate guidance.

C. Matching Demonstration on Object Recognition Databases

In this subsection, we evaluate our algorithm on the Calte@h Object Recognition databasend ETHS80
databasé. Four categories of images are used in this demonstratien,themotorbikesand face images from
Caltech101 database as well as tliog and horseimages from the ETHB0 database. Since for the objects of
different types, the correspondences may not be one-tpeotieeshold oD:01 is used in the discretization process
and thus the correspondence number is determined autathatieor comparison, the matchings with the lardest
cosine distances are also plotted as baseline, whisréhe number of correspondences determined by our algarith
The matching results are demonstrated by Figure 9-11, ictwthie reliable correspondences drawn by hand are
marked by red stars, the obscure guidance indicated by humeraction is described by rectangles of different

2http://www.vision.caltech.edu/Image Datasets/Calt€dth
3http://www.vision.ethz.ch/projects/categorization/
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Fig. 8. The number of correct matches v.s. the number of aatioally selected reliable correspondences on the rstitwages of Graf ti
database.

Ak *
jafe s 4 X

Fig. 9. Semi-supervised RCP results by manual pairwiseespandence labeling (1st row) v.s. baseline algorithm (2mg.

colors and the automatically derived reliable correspande are plotted by small crosses. The correspondence
number of the two gures within the same column is the samentthe results we can observe that the matching
accuracy is boosted with the guidance of the manually labetgrespondences, and the unsupervised version of

our algorithm is also superior over the baseline algorithm.
V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an ef cient feature matching #ework that transduces certain number of reliable
correspondences to the remaining ones by utilizing bothmgdac coherency constraints and feature agreements.
Furthermore, the framework is naturally extended to inocafe human interactions for promoting feature matching
performance. Experimental results showed that our algoritboth semi-supervised and unsupervised versions,
achieves a higher matching accuracy compared to the dttie-art techniques. We are planning to further
investigate our algorithm with other feature descriptonsl @&xplore the combination with the ANMS strategy

for reliable correspondence selection.
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