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Abstract—In this paper, we develop a new framework for face recognition based

on nonparametric discriminant analysis (NDA) and multiclassifier integration.

Traditional LDA-based methods suffer a fundamental limitation originating from

the parametric nature of scatter matrices, which are based on the Gaussian

distribution assumption. The performance of these methods notably degrades

when the actual distribution is non-Gaussian. To address this problem, we

propose a new formulation of scatter matrices to extend the two-class NDA to

multiclass cases. Then, in order to exploit the discriminant information in both the

principal space and the null space of the intraclass scatter matrix, we develop two

improved multiclass NDA-based algorithms (NSA and NFA) with each one having

two complementary methods that are based on the principal space and the null

space of the intraclass scatter matrix, respectively. Comparing to the NSA, the

NFA is more effective in the utilization of the classification boundary information. In

order to exploit the complementary nature of the two kinds of NFA (PNFA and

NNFA), we finally develop a dual NFA-based multiclassifier fusion framework by

employing the overcomplete Gabor representation for face images to boost the

recognition performance. We show the improvements of the developed new

algorithms over the traditional subspace methods through comparative

experiments on two challenging face databases, the Purdue AR database and the

XM2VTS database.

Index Terms—Face recognition, classifier design and evaluation, nonparametric

discriminant analysis (NDA), multiclassifier fusion.
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1 INTRODUCTION

LINEAR Discriminant Analysis (LDA) [6] is a representative
subspace analysis method which has been extensively studied
for face recognition. It aims to find the most discriminative features
by maximizing the ratio of the determinant of the between-class
scatter matrix to that of the within-class scatter matrix. To enhance
the stability and performance of LDA, a number of improved
LDA-based methods [1], [2], [4], [5], [11], [15], [18], [19], [20], [21],
[24], [25], [26], [27], [28] have been proposed. However, most of the
existing LDA-based methods inherit the parametric nature from
the traditional LDA approach: The construction of the scatter
matrices relies on the underlying assumption that the samples in
each class satisfy the Gaussian distribution. Thus, they suffer
performance degradation in cases of non-Gaussian distribution. In
[7], a nonparametric technique is developed to overcome the
problem by introducing a new definition for the between-class

scatter matrix, which explicitly emphasizes the samples near
boundary. Under the new formulation, by utilizing the whole
training set, instead of merely the class centers, and weighting the
sample pairs according to their contributions to discrimination, the
learning algorithm generates a model more adapted to the sample
space, especially in the non-Gaussian cases. However, this
nonparametric definition is restricted to the two-class cases and
cannot be applied in the multiclass classification such as face
recognition. In this paper, we propose a new formulation of
between-class scatter matrix by extending the definition of the
original nonparametric between-class scatter matrix to the multi-
class problem [9]. Based on this new formulation, a new method
called multiclass nonparametric discriminant analysis (NDA) is
proposed.

The well-known small sample size problem often arises when

applying LDA in face recognition due to the high dimensionality of

the sample space and the limited training set. In these cases, the

within-class scatter matrix becomes nearly singular, which would

incur serious instability and overfitting. In order to address this

problem, we further propose a new method called principal

nonparametric subspace analysis (PNSA) to extract nonparametric

discriminating features within the principal subspace of within-

class scatter matrix. This helps stabilize the transformation and

thus improves the generalization performance.
A limitation of the PNSA method is that it only utilizes the

principal subspace of the intrapersonal scatter with the whole null

space discarded. It has been shown that the null space of within-

class scatter also contains important discriminative information [3],

[19], so we develop another method called null-space nonpara-

metric subspace analysis (NNSA) to make use of the null space of

the within-class scatter matrix.
However, the within-class scatter matrix in nonparametric

subspace analysis (NSA) still has the parametric form, which may

cause recognition performance degradation. In order to address

this problem, we further propose a new formulation of scatter

matrices in which both the within-class and between-class scatter

matrices are redefined in nonparametric form to better exploit the

discriminant information in training data. Based on this new

formulation, an enhanced NSA algorithm called nonparametric

feature analysis (NFA) is derived accordingly. Similar to NSA, we

also derive two additional methods for the principal space and the

null space: The principal space NFA (PNFA) is based on the

principal space of the within-class scatter matrix and the null-space

NFA (NNFA) is based on the null space of the within-class scatter

matrix. Inspired by the dual-space LDA in [19], we can see that the

two NFA-based approaches, PNFA and NNFA, are inherently

complementary. Thus, it is desirable to combine the two types of

classifiers.
We apply the developed NFA methods on Gabor features for

face recognition. Gabor wavelets have been shown to outperform

original appearance features [10], [22]. However, previous meth-

ods either downsample the Gabor responses [10] or use only the

Gabor responses at certain fiducial points [22]. To fully utilize all

the information embedded in the overcomplete Gabor representa-

tions without creating an extremely high-dimensional Gabor

space, we use multiple classifiers in a dual NFA framework to

handle the high dimensionality of Gabor features. Significant

improvement over conventional subspace methods are achieved as

demonstrated on two challenging face databases, the Purdue AR

database and the XM2VTS database. We chose these two data sets

because of their large variation of face samples over a reasonable

data size.
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2 RELATED WORK

2.1 Parametric Discriminant Analysis

LDA has been widely used for feature extraction in pattern

recognition. It is also called parametric discriminant analysis

(PDA) in [7] since it uses the parametric form of the scatter matrix

based on the Gaussian distribution assumption. In PDA, the

within-class scatter matrix and the between-class scatter matrix are

used to measure the class separability. They are defined as

Sw ¼
Xc

i¼1

X

xj2Ci
ðxj � �iÞðxj � �iÞT ; ð1Þ

Sb ¼
Xc

i¼1

Nið�i � �Þð�i � �ÞT ; ð2Þ

where �i denotes the mean of the class Ci, and Ni denotes the

number of samples in class Ci.
The PDA features are the optimal projection matrix Wopt,

which maximizes the ratio of the determinant of between-class

matrix to that of the within-class matrix,

Wopt ¼ w1w2; . . . wf½ � ¼ argmax
WTSbW
�� ��
WTSwW
�� �� ; ð3Þ

and, mathematically, it is equivalent to the leading eigenvectors

of S�1
w Sb.

From (1) to (3), we can see that the PDA has three

disadvantages. First, the PDA algorithm is based on the assump-

tion that all classes share the Gaussian distribution with the same

covariance matrix. So, it cannot perform well in the cases of non-

Gaussian distribution. Second, the number of the final LDA

features has an upper limit c� 1 because the rank of the between-

class matrix is at most c� 1. However, it is often insufficient to

separate the classes well with only c� 1 features, especially in

high-dimensional spaces. Third, with only the centers of classes

taken into account for computing between-class scatter matrix, it

fails to capture the boundary structure of classes effectively, which

has been shown to be essential in classification [7].

2.2 Two-Class Nonparametric Discriminant Analysis

For a two-class problem, a nonparametric technique called NDA

was proposed to solve the aforementioned problems in [7]. We call

it two-class NDA. In two-class NDA, the within-class scatter

matrix has the same form as the two-class PDA. The difference

between them lies in the definition of the between-class scatter

matrix. In [7], the two-class nonparametric between-class scatter

matrix is defined as

SNb ¼
XN1

l¼1

wð1; lÞ x1
l �m2 x1

l

� �� �
x1
l �m2 x1

l

� �� �T

þ
XN2

l¼1

wð2; lÞ x2
l �m1 x2

l

� �� �
x2
l �m1 x2

l

� �� �T
;

ð4Þ

where xil denotes the lth face vector of class i and mjðxilÞ is the local

KNN mean, defined by

mj x
i
l

� �
¼ 1

k

Xk

p¼1

NNp x
i
l ; j

� �
; ð5Þ

where NNpðxil ; jÞ is the pth nearest neighbor from class j to the face

vector xil , and wði; lÞ is the value of the weighting function. Later,

we will give an extended definition of wði; lÞ in (7) for multiclass

problem and explain the advantage of the nonparametric between-

class scatter matrix in detail.

3 NONPARAMETRIC DISCRIMINANT ANALYSIS-BASED

METHODS

3.1 Multiclass Nonparametric Discriminant Analysis

The original nonparametric between-class matrix definition, as

shown in (4), is only available for two-class cases. For face

recognition, which is a typical multiclass recognition problem, we

propose to generalize (4) to a multiclass form. We define the

nonparametric between-class scatter matrix for multiclass problem

as follows:

SNb ¼
Xc

i¼1

Xc

j¼1
j6¼i

XNi

l¼1

wði; j; lÞ xil �mj x
i
l

� �� �
xil �mj x

i
l

� �� �T
; ð6Þ

where wði; j; lÞ is defined as

wði; j; lÞ ¼
min d� xil ; NNk x

i
l ; i

� �� �
; d� xil ; NNk x

i
l ; j

� �� �� �

d� xil ; NNk x
i
l ; i

� �� �
þ d� xil ; NNk x

i
l ; j

� �� � ; ð7Þ

where � is a parameter ranging from zero to infinity which

controls the changing speed of the weight with respect to the

distance ratio. dðv1; v2Þ is the Euclidean distance between two

vectors v1 and v2. The weighting function has the property that, for

samples near the classification boundary, it approaches 0.5 and

drops off to zero if the samples are far away from the classification

boundary. By using such a weighting function, the boundary

information contained in the training set is emphasized.
After computing Sw and SNb , the final NDA features are the

eigenvectors of the matrix S�1
w SNb . To overcome the singularity

problem, PCA is applied before hand.
From (6), we have the following observations. First, if we select

k ¼ Ni and set all of the values of the weighting function to be one,

mjðxilÞ becomes �j, the center of class j. It means the NDA is

essentially a generalization of the PDA.
Second, in contrast to the PDA, which can only extract at most

c� 1 discriminant features, the NDA inherently breaks such

limitation by making use of all the samples in the construction of

Sb instead of merely using the class centers. Accordingly, many

more features can be extracted for discrimination and thus enhance

the classification performance with more information utilized.
Third, the NDA is more effective in capturing the boundary

structural information for different classes compared with the PDA

algorithm. This can be explained by examining the vectors

ðxil �mjðxilÞÞ. As illustrated in Fig. 1, where k is set to 1 and some

of these vectors are visualized, NDA has two advantages over PDA

in utilization of boundary information. On the one hand, the
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Fig. 1. Nonparametric between-class scatter and parametric between-class

scatter. v1: difference vector of the centers of the two classes; fv2; . . . ; v8g:
difference vectors from the samples located at the classification boundary.



nonparametric between-class scatter matrix spans a space invol-
ving the subspace spanned by the vectors fv2; . . . ; v8g, where
boundary structure is embedded. Therefore, the boundary
information can be effectively utilized. On the other hand, as
mentioned before, the weighting function in (6) can help
emphasize the samples near the boundary and thus capture the
boundary structure information more effectively. For PDA, it
computes the between-class scatter matrix only using vector v1,
which is merely the difference between the centers of the two
classes. It is obvious that v1 fails to capture the boundary structure
information.

One thing to note is that the number of neighbors, k, would
affect the recognition performance to some extent. Hence, it is
desirable to discuss how to choose an appropriate k for multiclass
NDA. As discussed above, if we select k ¼ Ni, which is actually the
largest possible value for k, and set all the values of the weighting
function to be 1, mjðxilÞ would become �j, which is the center of
class j. As a result, multiclass NDA would perform the same as
PDA. That means k should not be set too large. Otherwise,
multiclass NDA would approach PDA and, thus, may lose the
advantages of NDA. On the contrary, if we set k too small, such as
1, that means only a very small amount of training sample pairs are
utilized in the learning procedure of multiclass NDA, which may
lead to suboptimal performance due to the loss of much
information. Therefore, in our experiments, k is chosen as the
median of the sample number for each training class.

3.2 Nonparametric Subspace Analysis

Further, considering that Sw may become singular when the
number of samples of each class is small, directly solving
eigenvectors of S�1

w Sb is infeasible. Inspired by the unified
subspace [18] and the dual-space method [19], we propose two
kinds of NSA. One is based on the principal space of intraclass
scatter and the other is based on the null space of intraclass scatter.
We call them PNSA and NNSA, respectively.

The detailed algorithm of the PNSA is given as follows:

1. Project a face vector V to its PCA subspace established by
training samples and then adjust the PCA dimension to
better reduce noise.

2. Compute the whitened intrapersonal subspace using the
within-class scatter matrix in the reduced PCA subspace
and adjust the dimension of the whitened intrapersonal
subspace to better reduce the intrapersonal variations.

3. Calculate the nonparametric between-class scatter ma-
trix SNb in the whitened intrapersonal subspace according
to (6) and then determine the dominant eigenvectors of SNb
to obtain the PNSA subspace transformation matrix TPNSA.
The final PNSA transformation is formulated as

VPNSA ¼ TTPNSAV : ð8Þ

The difference between multiclass NDA and PNSA is that the
feature dimension of each step above is variant instead of fixed.
This will not only help reduce the feature dimension but also make
the transformation more stable and, hence, increase the general-
ization ability.

NNSA is another NSA-based technique. As opposed to PNSA,
which is based on the principal space of the within-class scatter
matrix, NNSA focuses on the null space:

1. Compute the within-class scatter matrix from the training
data and then calculate the null space projection of the
within-class scatter matrix.

2. Project the sample space to the null space and compute the
nonparametric between-class scatter matrix SNb in null
space according to (6).

3. Calculate the dominant eigenvectors of SNb to obtain the
NNSA subspace transformation matrix TNNSA. For any
given face vector V , the NNSA transformation is formu-
lated as

VNNSA ¼ TTNNSAV : ð9Þ

3.3 Nonparametric Feature Analysis

However, the NSA algorithm still has some limitations. First, as

mentioned before, the within-class scatter matrix in NSA still has the

same form as PDA. This may affect the recognition performance.

Second, the NSA algorithm uses the simple local mean instead of all

the selected KNN samples to compute the between-class vectors for

the calculation of between-class scatter matrix without considering

the fact that different KNN points contribute differently to the

construction of between-class scatter matrix.
In order to address these problems, we further develop an

enhanced NSA algorithm called NFA for face recognition. In NFA,

the new nonparametric within-class scatter matrix and between-

class scatter matrix are defined as

SNFAw ¼
Xc

i¼1

Xk1

p¼1

XNi

l¼1

xil �NNp x
i
l ; i

� �� �
xil �NNp x

i
l ; i

� �� �T
; ð10Þ

SNFAb ¼
Xc

i¼1

Xc

j¼1
j6¼i

Xk2

p¼1

XNi

l¼1

wði; j; p; lÞ xil �NNp x
i
l ; j

� �� �

xil �NNp x
i
l ; j

� �� �T
;

ð11Þ

where the weighting function in (9) is defined as

wði; j; p; lÞ ¼
min d� xil ; NNp x

i
l ; i

� �� �
; d� xil ; NNp x

i
l ; j

� �� �� �

d� xil ; NNp x
i
l ; i

� �� �
þ d� xil ; NNp x

i
l ; j

� �� � : ð12Þ

Compared with the NSA, the within-class scatter matrix of NFA

has the nonparametric form. Moreover, instead of using the simple

local mean to estimate the between-class scatter matrix in NSA, the

NFA estimates the contribution of the KNN points, respectively,

for the calculation of the between-class scatter matrix. This leads to

a more flexible and accurate estimation of the between-class scatter

matrix. The experimental results given in Section 5 clearly show

the considerable recognition performance improvement of NFA

over the NSA.
In order to fully utilize the discriminant information contained

in the principal space and the null space of the intraclass scatter

matrix, similar to NSA, we also propose two kinds of NFA

methods: PNFA and NNFA. The former is based on the principal

space of intrapersonal scatter, and the latter is based on the null

space of intrapersonal scatter.
The detailed algorithms of the PNFA and NNFA are given as

follows:

1. Project a face vector V to its PCA subspace established by
training samples and then adjust the PCA dimension to
better reduce the noise. Compute the nonparametric
within-class scatter matrix SNFAw in the reduced PCA
subspace.

2. Apply PCA to SNFAw and calculate the principal space F

and its complementary subspace F .
3. In F , compute the whitened intrapersonal subspace and

then adjust the dimension to better reduce the intraperso-
nal variations. Calculate the nonparametric between-class
scatter matrix SNFAb in the reduced intrapersonal principal
subspace and then determine the dominant eigenvectors of
SNFAb to obtain the PNFA subspace transformation TPNFA.
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This serves as a PNFA classifier, and the transformation is
formulated as

VPNFA ¼ TTPNFAV : ð13Þ

4. In F , compute the nonparametric between-class scatter
matrix SNFAb and then determine the dominant eigenvec-
tors of SNFAb to obtain the NNFA subspace transformation
TNNFA. This serves as an NNFA classifier and the
transformation is

VNNFA ¼ TTNNFAV : ð14Þ

4 DUAL-NFA FOR GABOR FEATURE EXTRACTION

As discussed before, the PNFA and the NNFA are complementary
of each other. The former preserves the principal subspace of the
within-class scatter matrix with the information in the null space of
the within-class scatter matrix discarded. The latter preserves the
null space while discards the information in the principal
subspace. It is therefore desirable to integrate them together to
fully utilize the discriminative information in the whole space. We
call this integrated method the dual NFA.

To demonstrate the advantage of the developed NFA methods,
we apply them on Gabor features for face recognition [10], [22]. By
applying Gabor wavelet transform, we acquire a set of Gabor-
based images for each face image. Contrary to the traditional
Gabor wavelet representation, where only the Gabor wavelet
coefficients around some fiducial points [22] are computed, we
extract the Gabor wavelet features based on the whole image and
generate a complete sequence. Therefore, much more information
is available for further analysis. Nonetheless, such an approach
improves the utilization of information at the expense of increasing
processing complexity. For example, in our experiments, we have
40 Gabor images of size 61 � 41 for each sequence; thus, the feature
dimension is 100,040. Such a huge amount of data is difficult to
process directly.

In order to handle these data efficiently without notably
compromising the utilization of information, inspired by the
fusion framework developed for face video sequence in [16], a
multiple classifier fusion framework is developed. We first apply
the appropriate classifier to process each individual Gabor image.
Then, all of the classifiers are integrated via a fusion rule to obtain
the final decision.

A variety of methods on combining multiple classifiers have
been proposed in [8], [23] such as majority voting and sum rule. In
this paper, we use two simple fusion rules to combine the frame-
based classifiers: majority voting and sum rule. More sophisticated
combination algorithms may further improve the recognition
accuracy. By incorporating all these strategies, a multiclassifier
framework integrating both PNFA and NNFA on Gabor image
representation is developed, which is called dual NFA-based
multiple classifier fusion method. The procedure of the algorithm
is illustrated in Fig. 2.

5 EXPERIMENTS

In this section, we conduct experiments on two standard face data
sets, the AR database [12] and the XM2VTS database [13].
Comparing to other standard data sets, these two data sets have
large within-class variations for a relatively large number of
people, thus showing a higher degree of non-Gaussian distribu-
tion. To better evaluate the recognition performance with
geometric and photometric interferences filtered out, we prepro-
cess the face images through the following steps:

1. Rotate the face images to align the vertical face orientation.
2. Scale the face images so that the distances between the two

eyes are the same for all images.
3. Crop the face images to remove the background and the

hair region.
4. Apply histogram equalization to the face images for

photometric normalization.

5.1 Experiment on the AR Face Database

The AR face database contains 126 different persons (70 males and

56 females). Each person has 26 frontal face images, which are

divided into two sessions with different expression and different
lighting and occlusion. For this database, there are, in total, 90 people

who have complete face sequences from both sessions. Here, we

select the training data and the testing data from the face images of
these 90 persons. For the training data, we select 90 � 7 nonoccluded

face images of 90 persons from the first session. The testing data are

composed of a gallery set and a probe set. The gallery set consists of
90 normal face images of 90 persons from the first session while the

probe set consists of 90 � 7 nonoccluded face images of 90 persons

from the second session. The face images in the data set are subject to

significant illumination variation and exaggerated expression. This
makes the recognition task very challenging. The poor recognition

accuracies of the traditional subspace methods in Table 1 clearly

show this point.
Using the gray level features, the first experiment is to compare

the three proposed nonparametric methods: NDA, NSA, and NFA
with several popular subspace methods: PCA [17], LDA [1],

Bayesian method [14], Kernel LDA [24], where we use the popular

polynomial kernel with degree 2, and Local Discriminant Embed-

ding (LDE) [2], which is an improved LDA-based method that
relies on manifold learning to learn the class statistics. The

comparative recognition results are summarized in Table 1. For

the proposed nonparametric methods, we set the number of
neighbors to 4 and, finally, extract 89 nonparametric discriminant

features for classification. From these results, we can see that the
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Fig. 2. The procedure of dual NFA-based multiple classifier framework. PNFAðiÞ
and NNFAðiÞ mean performing PNFA and NNFA on the ith Gabor image.



multiclass NDA method, which is the original nonparametric

method, outperforms all five of the popular subspace methods. In

addition, further improvement on the recognition accuracy is

achieved by the improved multiclass NDA-based method: NSA

(PNSA and NNSA). Furthermore, when using the enhanced NSA

method, NFA (PNFA and NNFA), we achieve the best recognition

accuracy. This shows the advantage of the nonparametric

techniques.
In the second experiment, we investigate the performance of the

NFA-based multiclassifier fusion framework on Gabor wavelet

images. As mentioned above, 40 Gabor wavelet images are

obtained for each face; accordingly, 40 PNFA-based classifiers

and 40 NNFA-based classifiers are constructed, with each one

corresponding to the image acquired by a certain Gabor kernel.

Two popular fusion methods (sum rule and voting rule) are

applied to combine the classifiers. The results of the experiment are

reported in Table 2. From the results, we have the following

observations: 1) By fusing the classifiers based on 40 different

Gabor wavelet images, we achieve much better performance than

single appearance models and 2) combining the PNFA and NNFA

models leads to higher accuracy than combining only the PNFA

models or NNFA models, confirming that the PNFA models and

NNFA models are mutually complementary to each other.
The proposed multiclassifier fusion framework can also be used

for other algorithms such as PCA and LDA to boost the

performance of these methods. To verify this point, we conduct

an additional experiment using this framework combined with

PCA and LDA. The results are reported in Table 3, from which we

have the following observations: On the one hand, we can clearly

see that the results in Table 3 are much better than those in Table 1.

This shows the advantage of this multiclassifier fusion framework

again. On the other hand, the results in Table 3 are still lower than

Table 2. This is because we use the traditional subspace methods

(PCA and LDA) to replace the NFA in the framework in Table 3.

5.2 Experiment on the XM2VTS Database

For the XM2VTS database, we select all 295 people with four face

images from four different sessions for each person. For the

training data, we select 295 � 3 images of 295 people from the first

three sessions. The gallery set is composed of 295 images of

295 people from the first session. The probe set is composed of

295 images of 295 people from the fourth session.
We implement the comparative experiment similarly to the

Purdue AR face database experiment. The comparative results are

reported in Tables 4, 5, and 6. For the proposed nonparametric

methods, we set the number of neighbors to 2 and, finally, extract

294 nonparametric discriminant features for classification. The

results further confirm our observations in the Purdue AR face

database.
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TABLE 1
Comparison of the Nonparametric Methods with Other Subspace Methods Using the Gray Level Features on the AR Face Database

TABLE 2
The Recognition Results of the NFA-Based Multiclassifier Fusion Framework on the Gabor Wavelet Images on the AR Face Database



6 CONCLUSION

Linear discriminant analysis (LDA) is a popular face recognition
method. However, conventional LDA faces difficulty in addressing
the non-Gaussian aspects of sample distributions due to its
parametric nature of scatter matrices. In this paper, a nonpara-
metric formulation of scatter matrices has been proposed to
overcome this problem. Using this new formulation, we have
proposed two kinds of nonparametric methods: PNSA and NNSA.
The former is based on the principal space of intraclass scatter,
while the latter is based on the null space of intraclass scatter.
Further, to achieve better stability and generalization performance,
an enhanced NSA algorithm called NFA (PNFA and NNFA) is

derived. Finally, based on the complementary nature of PNFA and
NNFA and the Gabor feature representation, we develop a dual
NFA-based classifier fusion framework to boost the recognition
performance. Experiments show the effectiveness of our frame-
work on the challenging AR and XM2VTS face databases.
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The Recognition Results of the Multiclassifier Fusion Framework Using the Traditional Subspace Methods
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