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Abstract—Discriminant feature extraction plays a central role in pattern recognition and classification. Linear Discriminant Analysis

(LDA) is a traditional algorithm for supervised feature extraction. Recently, unlabeled data have been utilized to improve LDA.

However, the intrinsic problems of LDA still exist and only the similarity among the unlabeled data is utilized. In this paper, we propose

a novel algorithm, called Semisupervised Semi-Riemannian Metric Map (S3RMM), following the geometric framework of semi-

Riemannian manifolds. S3RMM maximizes the discrepancy of the separability and similarity measures of scatters formulated by using

semi-Riemannian metric tensors. The metric tensor of each sample is learned via semisupervised regression. Our method can also be

a general framework for proposing new semisupervised algorithms, utilizing the existing discrepancy-criterion-based algorithms. The

experiments demonstrated on faces and handwritten digits show that S3RMM is promising for semisupervised feature extraction.

Index Terms—Linear discriminant analysis, semisupervised learning, semi-Riemannian manifolds, feature extraction.

Ç

1 INTRODUCTION

DISCRIMINANT feature extraction is a central topic in
pattern recognition and classification. Principal Com-

ponent Analysis (PCA) and Linear Discriminant Analysis
(LDA) are two traditional algorithms for linear feature
extraction [1]. As the underlying structure of data may not
be linear, some nonlinear feature extraction algorithms, e.g.,
Locality Preserving Projections (LPP) [11] and Linear
Laplacian Discrimination (LLD) [51], have been developed.
In addition, the kernel trick [19] is also widely used to extend
linear feature extraction algorithms to nonlinear ones by
performing linear operations in a higher or even infinite-
dimensional space transformed by a kernel mapping
function. Despite the success of LDA and its variants [13],
[42], [51], it has been found to have some intrinsic problems
[40]: singularity of within-class scatter matrices and limited
available projection directions. Much work has been done to
deal with these problems [7], [10], [35], [36], [37], [38], [39],
[40], [41], [44]. Most of such work can be traced back to LDA
and Fisher criterion, i.e., the structural analysis of classes by
simultaneously maximizing the between-class scatter and
minimizing the within-class scatter via the ratio of them.

The discrepancy criterion has been developed recently as

an alternative way to avoid the intrinsic problems of LDA.

Such kind of methods include Maximum Margin Criterion

(MMC) [16], Kernel Scatter-Difference Analysis (KSDA)

[18], Stepwise Nonparametric Maximum Margin Criterion
(SNMMC) [25], Local and Weighted Maximum Margin
Discriminant Analysis (LWMMDA) [33], Average Neigh-
borhood Margin Maximization (ANMM) [32], and Discri-
minative Locality Alignment (DLA) [46]. It has also been
found that the Fisher criterion can be well solved by
iterative discrepancy criterions [34]. Zhao et al. have found
that the discrepancy criterion can be adapted into the
framework of semi-Riemannian manifolds [50]. They devel-
oped Semi-Riemannian Discriminant Analysis (SRDA)
using this framework [50]. All these discrepancy-criterion-
based methods are supervised methods.

In many real-world applications, labeled data are hard or
expensive to obtain. This makes it necessary to utilize
unlabeled data. Both labeled and unlabeled data can
contribute to the learning process [3], [53]. Consequently,
semisupervised learning, which aims at learning from both
labeled and unlabeled data, has been a hot topic within the
machine learning community [53]. Many semisupervised
learning methods have been proposed, e.g., Transductive
SVM (TSVM) [31], Cotraining [5], and graph-based semi-
supervised learning algorithms [3], [28], [52]. Semisuper-
vised dimensionality reduction has been considered
recently, e.g., semisupervised discriminant analysis (SDA
[6] and SSDA [48]). However, SDA and SSDA also suffer
from the problems of the Fisher criterion, as a result of
which both of them use Tikhonov regularization to deal
with the singularity problem as in regularized discriminant
analysis [7]. In [43] a graph-based subspace semisupervised
learning framework (SSLF) has been developed as a
semisupervised extension of graph embedding [41] and
several semisupervised algorithms, including SSLDA,
SSLPP, and SSMFA, are provided. Supervised methods
based on the discrepancy criterion have also been extended
to the semisupervised case, e.g., Semisupervised Discrimi-
native Locality Alignment (SDLA) is the semisupervised
counterpart of DLA [46]. SDA, SSLF, and SDLA only utilize
the smooth regularization on unlabeled or all data, while
SSDA adds a term to capture the similarity between
unlabeled data points and class centers of labeled data.
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However, the smooth regularization may not be the optimal
constraints on samples. First, not all the neighbors of a
sample have the same label. Second, they set the size of
neighborhoods in advance, and then, there are no con-
straints between two samples if they are not neighbors.
Thus, the discriminant information among unlabeled data is
not well used.

In this paper, we propose a novel algorithm, Semisuper-
vised Semi-Riemannian Metric Map (S3RMM), for semisu-
pervised dimensionality reduction. Our algorithm consists of
two steps: learning semi-Riemannian metrics and pursuing
the optimal low-dimensional projection. We formulate the
problem of learning semi-Riemannian metric tensors as
semisupervised regression. Labeled data are used to initi-
alize the regression. Then, a fast and efficient graph-based
semisupervised learning scheme is adopted and closed-form
solutions are given. The optimal low-dimensional projection
is obtained via maximizing the total margin of all samples
encoded in semi-Riemannian metric tensors. Unlike previous
manifold-based algorithms [2], [3], [26], [49] in which
learning the manifold structure does not use any class labels,
we construct the manifold structure using the partial labels.
Labeled samples can help discover the structure, so our semi-
Riemannian manifolds can be more discriminative. We
utilize unlabeled data in two aspects: First, the unlabeled
data help to estimate the geodesic distances between
samples, so that the structure of all data is captured; second,
the separability and similarity criteria between all sample
points, including labeled and unlabeled data, are considered.
In addition, our method provides a new general framework
for semisupervised dimensionality reduction.

The rest of this paper is organized as follows: Section 2
recalls basic conceptsof semi-Riemannianspaces. InSection 3,
we begin with the discrepancy criterion and the semi-
Riemannian geometry framework, then present our method
of learning semi-Riemannian metrics, and finally summarize
the S3RMM algorithm. Section 4 discusses its extensions and
relationships to the previous research. Section 5 shows the
experimental results on face and handwritten digit recogni-
tion. Finally, we conclude this paper in Section 6.

2 SEMI-RIEMANNIAN SPACES

Semi-Riemannian manifolds were first applied to super-
vised discriminant analysis by Zhao et al. [50].

A semi-Riemannian space is a generalization of a
Riemannian space. The key difference between Riemannian
and semi-Riemannian spaces is that in a semi-Riemannian
space the metric tensor need not be positive definite. Semi-
Riemannian manifolds (also called pseudo-Riemannian
manifolds) are smooth manifolds furnished with semi-
Riemannian metric tensors. The geometry of semi-Rieman-
nian manifolds is called semi-Riemannian geometry. Semi-
Riemannian geometry has been applied to Einstein’s general
relativity, as a basic geometric tool of modeling space-time
in physics. One may refer to [21] for more details.

The metric of a semi-Riemannian manifold NNn
� is of the

form

� ¼
����p�p; 0

0; ��̂���

� �
;

where ����p�p and �̂��� are diagonal and their diagonal entries
are positive, andpþ � ¼ n.� is called the index of NNn

� . With�,
the space-time interval ds2 in NNn

� can be written as

ds2 ¼ ðdxÞT�dx ¼
Xp
i¼1

��ði; iÞdx2
i �

X�
i¼1

�̂ði; iÞdx2
i :

The interval is called space-like if it is positive, time-like if it
is negative, and null (or light-like) if it is zero. One may
refer to Fig. 1 for an illustration of the space-time interval.

3 SEMIsUPERVISED SEMI-RIEMANNIAN METRIC

MAP

In this paper, we focus on the problem of pursuing the
optimal projection matrix U under the semisupervised
setting, i.e., given l labeled samples fx1; . . . ;xlg, each of
which has a class label ci 2 f1; . . . ; cg, and m unlabeled
samples fxlþ1; . . . ;xng with unknown class memberships.
In addition, we have lþm ¼ n and xi 2 IRD. With the
optimal projection matrix, we project the samples into a
low-dimensional space: yi ¼ UTxi, i ¼ 1; . . . ; n. Denote X ¼
½x1; . . . ;xn� and Y ¼ ½y1; . . . ;yn�.

3.1 The Discrepancy Criterion

Given only the labeled training set fx1; . . . ;xlg and the labels
of each sample ci 2 f1; . . . ; cg, many dimensionality reduc-
tion methods aim at learning a projection U to maximize the
within-class similarity and between-class separability. Tra-
ditional LDA maximizes the following ratio:

J ¼ trðUTSbUÞ
trðUTSwUÞ

;

where Sb ¼
Pc

k¼1 lkðxk � xÞðxk � xÞT is the between-class
scatter matrix, Sw ¼

Pc
k¼1

P
ci¼kðxi � xkÞðxi � xkÞT is the

within-class scatter matrix, and trð�Þ is the trace operator.
xk ¼ 1

lk

P
ci¼k xi is the mean of the kth class, x ¼ 1

l

Pn
i¼1 xi is

the mean of all data samples, and lk is the number of samples
in the kth class. This ratio is known as the Fisher criterion.

The discrepancy criterion [16], [32] defines two types of
neighborhoods:

. Homogeneous Neighborhoods N̂ K̂
i : the set of K̂ most

similar data in the same class of xi.

ZHANG ET AL.: LEARNING SEMI-RIEMANNIAN METRICS FOR SEMISUPERVISED FEATURE EXTRACTION 601

Fig. 1. An illustration of the space-time interval ds2 ¼ dx2
1 þ dx2

2 � dx2
3.

The space-time interval is space-like outside the cone, null (or light-like)
on the cone and time-like inside the cone.



. Heterogeneous Neighborhoods �N
�K

i : the set of �K most
similar data not in the same class of xi.

Taking ANMM [32] as an example, the average

neighborhood margin �i for xi in the projected space can

be measured as

�i ¼
X
j2 �N

�K

i

1
�K
kyj � yik2 �

X
j2N̂ K̂

i

1

K̂
kyj � yik2; ð1Þ

where k � k is the L2-norm. The maximization of such a

margin can project high-dimensional data into a low-

dimensional feature space with high within-class similarity

and between-class separability. Fig. 2 gives an intuitive

illustration of the discrepancy criterion.

3.2 Semi-Riemannian-Geometry-Based Feature
Extraction Framework

The average neighborhood margin can be generalized in the

framework of semi-Riemannian geometry. In contrast to the

local semi-Riemannian metric tensors and the global align-

ment of local semi-Riemannian geometry in [50], we define

global semi-Riemannian metric tensors to unify the discre-

pancy criterion. A global metric tensor encodes the structural

relationship of all data samples to a sample, while in a local

metric tensor only samples in neighborhoods are chosen. For

a sample xi, its metric tensor �i is a diagonal matrix with

positive, negative, or zero diagonal elements:

�iðj; jÞ
> 0; if xj 2 �N

�K

i ;

< 0; if xj 2 N̂ K̂
i ;

¼ 0; if xj 62 �N
�K

i and xj 62 N̂ K̂
i :

8>><>>:
Then, the construction of the homogeneous and hetero-

geneous neighborhoods as well as the metric tensor do not

need to follow those in Section 3.1.
The margin �i can be written as

�i ¼
X
j

�iðj; jÞkyj � yik2; ð2Þ

which is in the same form of the space-time interval. So,

we consider the sample space with class structures as a

semi-Riemannian manifold. Unlike Riemannian metric

tensors, which are positive-definite, semi-Riemannian
metric tensors can naturally encode the class structures.
Thus, a semi-Riemannian manifold is more discriminative.

We define a metric matrix G, where the ith column of G
(denoted as gi) is the diagonal of �i, i.e., gi ¼ ½g1i; . . . ; gni�T
and gji ¼ �iðj; jÞ (j ¼ 1; . . . ; n). An entry gji in G is called a
metric component of a metric tensor gi. The projections can
be learned via maximizing the total margin

� ¼ 1

2

Xn
i¼1

�i ¼
1

2

Xn
i;j¼1

gjiðyj � yiÞT ðyj � yiÞ;

¼ trðYLGYT Þ ¼ trðUTXLGXTUÞ;
ð3Þ

i.e., pulling the structures of samples in the embedded low-
dimensional space toward the space-likeness, where LG is
the Laplacian matrix of 1

2 ðGþGT Þ. If G is already learned
(detailed in Section 3.3), the optimal linear projection
matrix U, which projects the samples into a d-dimensional
euclidean space and satisfies UTU ¼ Id�d and Y ¼ UTX,
can be found to be composed of the eigenvectors of XLGXT

corresponding to its first d largest eigenvalues.
The cases of nonlinear and multilinear embedding can be

easily extended via the kernel method and tensorization,
respectively, as in [29], [32], [47].

3.3 Semisupervised Learning of Semi-Riemannian
Metrics

The key problem in the semi-Riemannian geometry frame-
work is to determine the metric matrix G. Under the
semisupervised setting, the metric matrix G can be divided
into four blocks:

G ¼ GLL; GLU

GUL; GUU

� �
; ð4Þ

where GLL are the metric components between labeled
samples, GLU and GUL between labeled and unlabeled
samples, and GUU between unlabeled samples. GUL, GLU ,
and GUU are estimated via information propagation from
labeled data to unlabeled data, which is a common technique
in semisupervised learning [53]. Label propagation, as a kind
of information propagation, also appeared in some recent
papers on semisupervised feature extraction, e.g., [20].

In brief, the metric matrix is learned in three steps. First

of all, the metric tensors at labeled sample points, i.e., the

blocks GLL and GUL, are learned. Then, the neighborhood

relationships are propagated from metric tensors at labeled

sample points to unlabeled sample points, i.e., from GUL to

GLU . Finally, the metric tensors at unlabeled sample points,

i.e., GLU and GUU , are learned. Then, the metric tensor at a

point xi is a column vector gi of G. Similar to (4), gi can be

divided into two parts gLi and gUi , where gLi ¼ ½g1i; . . . ; gli�T
and gUi ¼ ½glþ1;i; . . . ; gni�T .

3.3.1 Local Nullity of Semi-Riemannian Manifolds

Null manifolds are a typical class of semi-Riemannian
manifolds, on which each point has a zero space-time
interval, being neither space-like nor time-like (see Fig. 1)
[21]. Inspired by the neutrality of null manifolds, we assume
that the samples in the original high-dimensional space lie on
a null manifold, so that the contributions of the homogeneous
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Fig. 2. An illustration of the margin maximization in the discrepancy
criterion. The elements with the same shape belong to the same class.
(a) xi and its neighbors in the original 2D plane, among which circles
except xi are homogeneous neighbors, while squares and triangles
belong to heterogeneous neighbors. (b) yi and the projected neighbors.



and heterogeneous neighborhoods are balanced. This leads
to a local nullity condition to each metric tensor

gTi di ¼
Xn
j¼1

gjid
2
ji ¼ 0; 8i ¼ 1; . . . ; n; ð5Þ

where dji is the pairwise distance from xj to xi on the data
manifold and di ¼ ½d2

1i; . . . ; d2
ni�

T .
In [50] the distance dji is chosen as the known metric of the

high-dimensional feature space, e.g., the euclidean distance
and �2 distance are used for raw image features and local
binary pattern features, respectively. However, we often do
not know the appropriate metrics a priori. Besides, the local
structure of samples has shown its power in unsupervised
manifold learning [2], [26] and supervised dimensionality
reduction [11], [41], [46]. Inspired by the ISOMAP algorithm
[30], we use geodesic distances, approximated by graph
distances.1 It is a great advantage of the semisupervised
setting that a number of unlabeled data exist and can be
utilized in the graph approximation of geodesic distances. So,
the geodesic distances capture the manifold structure of all
data. As a result, our global semi-Riemannian metric tensors
can achieve good performance even without careful tuning of
the sizes of the homogeneous and heterogeneous neighbor-
hoods. For example in Fig. 6, it is shown that the performance
is affected very slightly when the choice of �K varies in a large
range. To testify, we use two labeled and 28 unlabeled images
per person of 68 persons from the CMU PIE facial database
(with detailed descriptions in Section 5). We compare
geodesic distances and euclidean distances in two cases:
with only labeled data and with both labeled and unlabeled
data. The observations from Fig. 3 are as follows:

. According to (5), when d2
ji is large, the weight of xj in

the margin of xi is suppressed. The geodesic distance
of the kth nearest neighbor increases much faster than
the euclidean distance when k increases, so the
homogeneous and heterogeneous neighborhoods

can be selected automatically, i.e., setting K̂ and �K
to large values has almost no influence on the
performance of our algorithm.

. With a number of unlabeled data the geodesic
distances perform better than when only labeled
data are available.

. The performance of geodesic distances is robust to
the varying parameter K, the size of neighborhoods
for computing geodesic distances. So, we simply
choose K ¼ 5 in our implementation.

3.3.2 Metric Tensors of Labeled Samples

To determine gLi , we consider margins of labeled data first.

In ANMM [32] and DLA [46], the samples in the same kind

of neighborhood have equal weights in a margin. Such a

definition of margins only weakly models the intrinsic

structure of the training data. To overcome this drawback,

we define the average neighborhood margin normalized by

geodesic distances at a labeled point xiði ¼ 1; . . . ; lÞ as

�i ¼
X
j2 �N

�K

i

1
�K

kyj � yik
dji

� �2

�
X
j2N̂ K̂

i

1

K̂

kyj � yik
dji

� �2

; ð6Þ

where the homogeneous and heterogeneous neighborhoods

are chosen as in Section 3.1. Here, the importance of a

marginal sample xj is quantified by the distance dji to xi.

Then for xi, we have the metric components

gji ¼

1

j �N
�K

i jd2
ji

; if xj 2 �N
�K

i ;

� 1

jN̂ K̂
i jd2

ji

; if xj 2 N̂ K̂
i ;

0; if xj 62 �N
�K

i and xj 62 N̂ K̂
i ;

8>>>>><>>>>>:
ð7Þ

for all j ¼ 1; . . . ; l, where j � j is the cardinality of a set.

Equation (7) can also be obtained by the smoothness and

local nullity conditions as in [50] (please refer to the

Appendix A).
Now, we come to the metric components in gUi . The

metric component gji of gi can be regarded as a function of
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Fig. 3. Comparison of geodesic distances and euclidean distances. (a) only labeled data are available; (b) both labeled and unlabeled data are
available. d2

k is the squared distance from a sample to its kth nearest neighbor. X-axis sorts the neighbors with increasing distances and the first
100 neighbors are presented. Y-axis offers the ratio between minimum squared distances and d2

k. The results are averaged over 50 randomly
selected samples.

1. The geodesic distances are computed as follows: First, the K-nearest-
neighbor graph is constructed for all samples and the weight of an edge
connecting two samples is their euclidean distance. Then, the geodesic
distance between two samples is the length of the shortest path connecting
them.



xj in the sample space. So, gUi can be inferred from gLi by
semisupervised regression as follows.

We assume that nearby points are likely to have close
function values, which is known as the smoothness
assumption. So, gji should be close to the metric compo-
nents of gi corresponding to xj’s neighbors. For example, if
xj is surrounded by heterogenous neighbors of xi, gji
should be nonnegative. We choose the similarity measure
ajk between samples xj and xk as

ajk ¼ exp �kxj�xkk2

2�2

� �
; if xj 2 NK

k or xk 2 NK
j ;

0; otherwise;

(
where NK

j and NK
k are the K-nearest neighborhoods of xj

and xk, respectively. In our experiments, K ¼ 5 and � is the
average distance of all sample points to their 6th nearest
neighbors.

Then, we estimate the metric tensor gi by minimizing

�iðgiÞ ¼
1

2

Xn
j;k¼1

ajkðgji � gkiÞ2 þ �l
Xn
j¼1

g2
ji;

¼ gTi ðLA þ �lIn�nÞgi;
s:t: gTi di ¼ 0 and gLi is fixed as in ð7Þ;

ð8Þ

where �l is a regularization parameter to avoid singularity
of LA, which is empirically chosen as 0.01, A ¼ ½ajk�n�n, and
LA is the Laplacian matrix of 1

2 ðAþAT Þ.
By the Lagrangian multiplier, we get the solution of (8):

gi ¼
gLi
gUi

" #
;

gUi ¼ L�1
UU

ðLULgLi Þ
TL�1

UUdUi

ðdUi Þ
TL�1

UUdUi
dUi � LULgLi

 !
;

ð9Þ

where the symmetric matrix ðLA þ �lIn�nÞ is divided into

LLL LLU

LUL LUU

� �
similar to (4) and dUi ¼ ½d2

lþ1;i; . . . ; d2
ni�

T .

3.3.3 Neighborhood Relationship Propagation

Metric tensors encode the structure of the sample space. The
metric components gji and gij are not independent because
if xj is in the homogenous or heterogenous neighborhood of
xi, xi is probably in the same type of neighborhood of xj.
So, metric tensors of labeled samples provide a priori
information for those of unlabeled samples. However, we
do not propagate all information in GUL as components
with small values are disturbed more easily by noise. So, we
initialize the neighborhoods of unlabeled samples as
follows: In the metric tensor of each labeled sample
xiði ¼ 1; . . . ; lÞ, we choose mK̂

l negative and m �K
l positive

entries from gUi with the largest absolute values, and then,
put xi in the homogeneous or heterogeneous neighbor-
hoods to the corresponding unlabeled samples according to
these entries’ signs. We also put the K̂-nearest and �K-
farthest samples of an unlabeled sample in its homogeneous
and heterogeneous neighborhoods, respectively, as it is
more likely for the K̂-nearest samples to be in the same

class as the sample and the �K-farthest samples to be in

different classes from the sample.

3.3.4 Metric Tensors of Unlabeled Samples

We initialize the metric tensor of an unlabeled sample

xi ði ¼ lþ 1; . . . ; nÞ as (7) for j ¼ 1; . . . ; n, where �N
�K

i and

N̂ K̂
i have been constructed in Section 3.3.3, and denote this

initial value as egi, where egi ¼ ½eg1i; . . . ; egni�T .
Also by the smoothness of metric components, the metric

tensor gi can be estimated by minimizing

 iðgiÞ ¼
1

2

Xn
j;k¼1

ajkðgji � gkiÞ2 þ �u
Xn
j¼1

ðgji � egjiÞ2;
¼ gTi ðLA þ �uIn�nÞgi � 2�uegTi gi þ �uegTi egi;

s:t: gTi di ¼ 0;

ð10Þ

where �u is a control parameter (�u > 0), which is chosen as

�u ¼ 10 in our experiments. The regularization term with

the weight �u requires that the estimated metric tensor is

not far from its initial value.
By the Lagrangian multiplier, gi can be found as

gi ¼ eL�1 egi � egTi eL�1di

dTi
eL�1di

di

 !
; ð11Þ

where eL ¼ 1
�u

LA þ In�n.

3.3.5 S3RMM Algorithm

The learned matrix G in the above sections is not the final

form. We shall adjust it in two steps.
Noise reduction. Metric components in GUL, GLU , and

GUU are only estimations, so we need to reduce the effect of

incorrect components. Metric components close to zero are

regarded as unreliable and of little importance in a margin.

Thus, for each metric tensor gi, we set an entry gji to be zero if

xi or xj is unlabeled and jgjij < 1
10 maxgjigki>0jgkij. Besides, gji

and gij should reach an agreement on whether xi and xj are in

the same class. So, we split the metric matrix G to Gþ þG�,

where Gþ and G� keep the positive and negative entries of G,

respectively, while leaving the remaining entries zero. Then,

update eGþ ¼ minfGþ; ðGþÞTg and eG� ¼ maxfG�; ðG�ÞTg.
Finally, we combine them with a factor � 2 ½0:5; 1�:eG ¼ ð1� �Þ eGþ þ � eG�, to make the metric tensors tend to

be time-like [50].2 � can be estimated by cross validation.
Balancing contributions of labeled and unlabeled

samples. Because the target samples of classification are

only labeled samples, we suppress the contribution of

unlabeled samples as

eG0 ¼ eGLL; �1
eGLU

�1
eGUL; �2

eGUU

� �
;

where

eG ¼ eGLL
eGLUeGUL
eGUU

� �
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2. Note that the feature extraction process pulls the initially time-like
semi-Riemannian manifold toward the space likeness.



is the metric matrix obtained after noise reduction and the
values of �1 and �2 are chosen to be close to minf1; lmg and
minf1; ð lmÞ

2g, respectively. �1 and �2 do not exceed 1 because
the contribution of unlabeled samples should not be more
than that of labeled ones in the total margin (see (3)).

The whole procedure of S3RMM is summarized in Table 1.

4 DISCUSSION

In this section, we would like to discuss and highlight some
aspects of our S3RMM algorithm.

4.1 A General Framework for Semisupervised
Dimensionality Reduction

S3RMM can be viewed as a general framework for
semisupervised dimensionality reduction. First, our margin
maximization reformulation of SRDA [50] provides the
connection between the semi-Riemannian geometry frame-
work and the discrepancy criterion. So, S3RMM can be
integrated with any dimensionality reduction algorithm
based on the discrepancy criterion, e.g., MMC [16], ANMM
[32], and DLA [46], to obtain semisupervised extensions of
them. To create new algorithms, we only need to change the
structural properties of semi-Riemannian metric tensors, i.e.,
the constraints in (5) and (7). Second, in this framework we
utilize the separability and similarity between samples
including labeled and unlabeled ones, instead of the
regularization term on the graph of unlabeled or all samples
used in SDA [6], SSLF [43], and SDLA [46]. The traditional
regularization term is considered as a special case under our
framework (please refer to Appendix B). Finally, we only
use a simple yet efficient way to learn semi-Riemannian
metrics in this paper, and our method may be incorporated
with a number of semisupervised regression methods [53].

4.2 Comparison to SRDA

The major differences between our method and SRDA [50]
are threefold: First, we define global semi-Riemannian
metric tensors rather than local metric tensors as in SRDA.
Second, in SRDA asymmetric semi-Riemannian metrics are
learned locally at each sample xi independently, supervised
by the label information. The relationship among the
metrics at different data samples is not considered. In
contrast, in our method we learn asymmetric metrics from

labeled examples, local consistency in metric tensors and
weak propagation between metric tensors globally. Third,
different from the euclidean/�2 distances assumed known
in SRDA, we use geodesic distances from unsupervised

manifold learning, which do not require any a priori
knowledge of the sample space, to capture the manifold
structure of data.

4.3 Advantages over Semisupervised Discriminant
Analysis

S3RMM has several advantages over semisupervised dis-
criminant analysis (SDA [6] and SSDA [48]). First of all, our
algorithm can be applied to semisupervised dimensionality
reduction with pairwise constraints directly, i.e., we only
need to know pairwise constraints on partial samples, for
learning semi-Riemannian metrics. A pairwise constraint
between two samples, another kind of supervision informa-
tion usually used in semisupervised dimensionality reduc-
tion [12], [45], describes whether they belong to the same
class or not, rather than provides the labels. It might be too
expensive to obtain explicit class memberships in many
real-world applications. For example, in image retrieval it is
much easier to know the relevance relationship between
images, with the logs of user relevance feedback, while
obtaining the exact class label of images requires quite
expensive efforts of image annotation. Second, it is easy to
see that S3RMM avoids the intrinsic problems of LDA [40]:
the singularity problem and limited available projection
dimensions. SDA and SSDA alleviate, but not resolve, these
problems, as their optimization models are in the form of

J ¼ trðUTSbUÞ
trðUTSwUÞ þRðUÞ

;

where RðUÞ is some regularization term on the unlabeled
data [6], [48]. In contrast, S3RMM avoids the singularity
problem, as there is no matrix inversion involved. The
number of possible projection dimensions in S3RMM is not
limited to ðc� 1Þ either because this limitation of LDA
results from the limited ranks of the scatter matrices.

4.4 Connection to Indefinite Kernel PCA

The maximization of the total margin in (3), after learning
the metric matrix G, aims at finding the optimal linear
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TABLE 1
S3RMM Algorithm



projection matrix U satisfying that Y ¼ UTX. The manifold
learning counterpart of (3) is

max
Y

tr
�
YLGYT

	
;

which is equivalent to kernel PCA using ð�LGÞy (i.e.,, the
pseudo inverse of the matrix �LG) as the kernel matrix [8].
From this view, learning the semi-Riemannian metric
matrix can be interpreted as indefinite kernel learning
[22]. However, there are significant differences between
S3RMM and indefinite kernel learning. First, learning the
metric matrix is different from the existing indefinite kernel
learning approaches, such as [15]. Our algorithm learns a
sparse metric matrix, while does not learn the corresponding
nonsparse kernel matrix. Second, we aim at proposing a
linear feature extraction method, which is not so computa-
tionally expensive as kernel feature extraction and does not
have the out-of-sample problem [4]. Third, our semi-
Riemannian metric matrix encodes the structural relation-
ship of all data samples, but the kernel matrix is derived
from the mapping from the original sample space to some
infinite-dimensional Krein space [22]. Interested readers
may refer to [9], [14], [22] for the theory of Krein spaces.
Finally, the existing feature extraction methods based on
indefinite kernels define the kernel a priori [23]. To the best
of our knowledge, there are no feature extraction methods
utilizing indefinite kernel learning.

5 EXPERIMENTS

We compare our method to several recently proposed
semisupervised dimensionality reduction methods: SDA
[6], SSDA [48], SSLDA [43], and SDLA [46]. The first three
are different semisupervised extensions of LDA and the last
one is a discrepancy-criterion-based method. We also list
the results of traditional unsupervised and supervised
algorithms, including PCA, LDA, LPP [11], MFA [41], and
MMC [16], for reference.3 Results of DLA [46] and SRDA
[50] are presented for comparisons of supervised and
semisupervised methods. Note that like S3RMM, DLA/
SDLA [46] also utilizes the nonlinear structure of the sample
space and extracts linear projections. We test the perfor-
mance of S3RMM on two benchmark facial databases (CMU
PIE and FRGC 2.0) and the USPS handwritten digit data set.

Before the experiments on real imagery data, we conduct
simulations on synthetic data to show how well S3RMM
works.

5.1 Toy Experiments

To test our algorithm, we generate two kinds of 2D toy data
sets: two-line data shown in Fig. 4a and two-half-circle data
shown in Fig. 4b. The sample points are uniformly sampled
and perturbed by random Gaussian noise. The two classes of
labeled samples are shown with circles and crosses,
respectively, and the unlabeled samples are shown with
points. We present the results of SDLA and S3RMM, as
SDLA and S3RMM are both discrepancy-criterion-based
methods with different regularization terms on the un-
labeled data. SDLA adopts the graph-based regularization,

which only utilizes similarities between neighboring sam-
ples, while S3RMM takes advantage of both similarities and
dissimilarities between all samples, which are encoded in
metric tensors. To show how the unlabeled data affect the
projection direction, we set the weight of the term related to
the unlabeled data to be sufficiently large, and we also give
the result of DLA (i.e., the weight of the unlabeled data in
SDLA is set to be zero). The classification boundary,
perpendicular to the projection direction, is shown instead
for each method, to give a more clear illustration. From Fig. 4,
we can see that the graph-based regularization on the
unlabeled data in SDLA works well for two-line data, and
does not change the projection direction much for two-half-
circle data. It is because for two-line data the similarities of
neighboring samples vary a lot, when we choose different
projection directions, and for two-half-circle data they vary
little. However, S3RMM gives a nearly ideal boundary
between the two manifolds in both data.

We also test the robustness of our algorithm to noise on
the toy data. We repeat the above experiments 20 times and
find that the correlation between projection directions in
any two experiments is larger than 0.99. This result verifies
that our algorithm is robust to noisy data.
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3. We use implementations of PCA, LDA, LPP, MFA, and SDA from
http://www.zjucadcg.cn/dengcai/Data/data.html.

Fig. 4. Results of 2D toy experiments on two kinds of toy data.
(a) Simulation results on two-line data; (b) simulation results on two-half-
circle data.



5.2 Setup of Experiments on Real Data

In each experiment, we randomly select lþm images of each
person for the training set. Then, among the lþm images,
l images are randomly selected and labeled, forming the
labeled set, and the other m images form the unlabeled set.
The remaining images in the database are used for testing. We
test 50 trials of random splits and report the averaged results.

For unsupervised and supervised methods, the labeled
set is used for training. For semisupervised methods, the
unlabeled set is added to the training set. In all result tables,
we use US, S, SS as short for Unsupervised, Supervised, and
Semisupervised, respectively. A simple nearest-neighbor
classifier is employed on the extracted low-dimensional
features to classify samples in the unlabeled and test set.
The result of the nearest-neighbor classifier on raw features
without dimensionality reduction is used as the baseline.

All parameters of the involved methods are tuned on the
training set, by the full search over a relatively wide range
which is discretized by some step-size, e.g., for PCA
preprocessing, we test with the preserved energy being
between 90 percent and 100 percent.

5.3 Face Recognition

In our experiments, two benchmark face databases, CMU
PIE [27], and experiment 4 in FRGC 2.0 [24], are used. The
CMU PIE database contains more than 40,000 facial images
of 68 people. The images were acquired in different poses,
under various illumination conditions and with different
facial expressions. In our experiments, a subset, the frontal
pose (C 27) with varying lighting and illumination, is
used. So, each person has about 49 images and in total
3;329 images are collected. All the images are aligned by
fixing the locations of eyes, and then, normalized to 32�
32 pixels (Fig. 5a). The training set of experiment 4 in
FRGC 2.0 consists of controlled and uncontrolled still
images. We search all images of each person in this set and
take the first 60 images of the first 50 individuals the
number of whose facial images is more than 60. Thus, we
collect 3,000 facial images for our experiments. All the
images are aligned according to the positions of eyes and
mouths, and then, cropped to a size of 36� 32 (Fig. 5b).

In the first experiment, l ¼ 2, m ¼ 28, the number of test
images per individual is about 19, and the number of
individuals is 68. In the second experiment, l ¼ 5, m ¼ 35,
the number of test images per person is 20, and the number
of persons is 50. Table 2 provides results of each method.
The unsupervised method, PCA, only performs a little
better than the baseline without any feature extraction.
LDA, LPP, and MFA have good performance on PCA
features and SRDA, as reported in [50], outperforms the
supervised Fisher-criterion-based methods even if it is

applied to the raw data directly. The recognition results of
semisupervised methods are generally better than their
corresponding supervised methods as they utilize the
unlabeled data. S3RMM is the best in the semisupervised
methods and improves the results of SRDA. Besides, the
improvement of S3RMM is more than the differences
between other methods and their supervised counterparts.4

It is interesting to know the sensitivity to the sizes of
homogenous and heterogenous neighborhoods as our
method is based on maximizing the margins of such
neighborhoods. The size of homogenous neighborhoods is
limited by the number of samples per class, while the size of
heterogenous neighborhoods can be much larger, as the
number of samples not in the same class of a sample is very
large. Because there are many possible choices of the size of
heterogenous neighborhoods, we test the robustness of our
method when this size changes, although the robustness
may be implied by the properties of geodesic distances
discussed in Section 3.3.1. In the test, all parameters except
�K are fixed. Fig. 6 shows the error rates on unlabeled and

test data of both databases with a varying number of initial
heterogenous neighbors. We see here that S3RMM is
surprisingly robust.

We also test the sensitivity to �l in (8) and �u in (10). All
parameters except the tested parameter (�l or �u) are fixed.
Fig. 7 shows the error rates on unlabeled and test data of
both databases with a varying value of the tested para-
meter. We see that S3RMM is also robust against the
variance of these parameters in a large range.

5.4 Handwritten Digit Classification

The USPS data set contains grayscale handwritten digit
images scanned from envelopes by the US Postal Service
(Fig. 8). The images are of size 16� 16. The original
training set contains 7,291 images, and the test set contains
2,007 images.5 We used digits 1, 2, 3, 4, and 5 in our
experiments as the five classes.

On the USPS data set we choose l ¼ 5, m ¼ 95, the
number of test samples per class as 1,000 and the number of
classes as 5, respectively. The classification results are listed
in Table 3. PCA is only better than the baseline. The Fisher-
criterion-based methods, LDA, LPP, MFA, and SSLDA, do
not improve PCA features much. The discrepancy-criterion-
based methods, MMC, DLA, and SRDA, are better than
other supervised methods. Unlabeled data can improve the
classification accuracy and S3RMM is the best again.

6 CONCLUSION

In this paper, we address the problem of semisupervised
feature extraction via the semi-Riemannian geometry
framework. Under this framework, the margins of samples
in the high-dimensional space are encoded in the metric
tensors. We explicitly model the learning of semi-Rieman-
nian metric tensors as a semisupervised regression. Then,
the optimal projection is pursued by maximizing the
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Fig. 5. Sample images from (a) CMU PIE database and (b) FRGC 2.0
database.

4. PCA+LDA is compared with SSLDA because SSDLA is applied on
PCA transformed subspace while SDA and SSDA use the Tikhonov
regularization and are directly applied to the raw data.

5. We downloaded the set of 1,100 samples per class from http://
www.cs.toronto.edu/~roweis/data.html.



margins of samples in the embedded low-dimensional
space. Our algorithm can be a general framework for
semisupervised dimensionality reduction. Compared to
previous semisupervised methods, we utilize both the
separability and similarity criteria of labeled and unlabeled

samples. The links between our method and previous
research are discussed. The effectiveness is tested on face
recognition and handwritten digit classification.

For future work, it would be interesting to see whether
our algorithm can be integrated into an active learning
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Fig. 6. Recognition error rates of S3RMM against the variations of �K on unlabeled and test data of the CMU PIE and FRGC 2.0 databases. The
standard deviations of error rates against the variations of �K are all less than 0.1 percent. (a) CMU PIE and (b) FRGC 2.0.

Fig. 7. Recognition error rates of S3RMM against the variations of �l and �u on unlabeled and test data of the CMU PIE, and FRGC 2.0 databases.
The standard deviations of error rates against the variations of the parameters are also given (a) CMU PIE and (b) FRGC 2.0.

TABLE 2
Recognition Error Rates (Percent, in Mean�Std-Dev) on the CMU PIE and FRGC 2.0 Databases

The reduced error rates of semisupervised methods over their supervised counterparts are given in brackets.



framework. Those zero entries corresponding to unlabeled

data in the metric matrix might indicate the marginal

samples of a sample. Therefore, it is possible to design a

strategy on how to select the most informative samples to

label. It is attractive to explore in this direction.

APPENDIX A

CONNECTION BETWEEN SRDA AND ANMM

In SRDA [50], by the smoothness and local nullity condition

they learn semi-Riemannian metrics as

�gi ¼
�D
�1

i e �K

eT�K
�D
�1

i e �K

; ĝi ¼
eT�K

�Di�gi
�K

D̂�1
i eK̂ ;

where �Di ¼ diagð½d2
ji; j 2 �N

�K

i �Þ, D̂i ¼ diagð½d2
ji; j 2 N̂K̂

i �Þ and

e �K , eK̂ are all-one column vectors. Then, the margin in the

projected space for a sample xi can be written as

�i ¼ �KP
j2 �N

�K
i

d�2
ji

�0i, where

�0i ¼
X
j2 �N

�K

i

1
�K

kyj � yik
dji

� �2

�
X
j2N̂ K̂

i

1

K̂

kyj � yik
dji

� �2

: ð12Þ

The only difference between (12) and (1) is the distance

normalization, which can capture the structure of data better.

APPENDIX B

A SPECIAL CASE OF SEMIsUPERVISED

SEMI-RIEMANNIAN FRAMEWORK

In this appendix, we would like to show that the intrinsic

relationship between the conventional graph-based semi-

supervised dimensionality reduction methods, e.g., [43],

and our semisupervised semi-Riemannian framework.
Let A ¼ 0 (which can be achieved by choosing a very

small �), i.e., remove the consistency constraints inside the

metric tensors, and we have GUL ¼ 0 from (8). Following

the neighborhood propagation, we only add K̂-nearest and
�K-farthest neighbors of an unlabeled sample in its homo-

genous and heterogeneous neighborhoods, respectively.

Thus, we have

egji ¼
1

�Kd2
ji

; if xj 2 �N
�K

i ;

� 1
K̂d2

ji

; if xj 2 N̂ K̂
i ;

0; if xj 62 �N
�K

i and xj 62 N̂ K̂
i ;

8>>>><>>>>: ð13Þ

From Fig. 3 it is easy to see that

1

d2
ji

xj2 �N
�K

i

� 1

d2
ji













xj2 �N K̂

i

as �N
�K

i and �N K̂

i include �K-farthest and K̂-nearest neighbors,

respectively. Without loss of generality, let egj ¼ K̂egj and we

rewrite eg as

egji ¼ � 1
d2
ji

; if xj 2 N K̂
i ;

0; if xj 62 N K̂
i ;

8<: ð14Þ

Still by A ¼ 0, we have gj ¼ egj. If K̂ ¼ K, then xj 2 NK
i ,

and thus,

gji ¼
� 1
kxj�xik2 ; if xj 2 NK

i ;

0; if xj 62 NK
i :

(
ð15Þ

This leads to the widely used regularization term

gji ¼
�fðkxj � xikÞ; if xj 2 NK

i ;

0; if xj 62 NK
i :

(
ð16Þ

The function fð�Þ is chosen as fð�Þ ¼ 1 in SDA [6], SSLF [43],

and SDLA [46]. Another popular choice is fð�Þ ¼ e�
ð�Þ2

�2 .
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