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Abstract—Image re-ranking, as an effective way to improve the results of web-based image search, has been adopted by current
commercial search engines such as Bing and Google. Given a query keyword, a pool of images are first retrieved based on textual
information. By asking the user to select a query image from the pool, the remaining images are re-ranked based on their visual
similarities with the query image. A major challenge is that the similarities of visual features do not well correlate with images’ semantic
meanings which interpret users’ search intention. Recently people proposed to match images in a semantic space which used attributes
or reference classes closely related to the semantic meanings of images as basis. However, learning a universal visual semantic space
to characterize highly diverse images from the web is difficult and inefficient. In this paper, we propose a novel image re-ranking
framework, which automatically offline learns different semantic spaces for different query keywords. The visual features of images
are projected into their related semantic spaces to get semantic signatures. At the online stage, images are re-ranked by comparing
their semantic signatures obtained from the semantic space specified by the query keyword. The proposed query-specific semantic
signatures significantly improve both the accuracy and efficiency of image re-ranking. The original visual features of thousands of
dimensions can be projected to the semantic signatures as short as 25 dimensions. Experimental results show that 25%−40% relative
improvement has been achieved on re-ranking precisions compared with the state-of-the-art methods.
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1 INTRODUCTION

Web-scale image search engines mostly use keywords as
queries and rely on surrounding text to search images.
They suffer from the ambiguity of query keywords,
because it is hard for users to accurately describe the
visual content of target images only using keywords.
For example, using “apple” as a query keyword, the
retrieved images belong to different categories (also
called concepts in this paper), such as “red apple”,
“apple logo”, and “apple laptop”. In order to solve the
ambiguity, content-based image retrieval [1], [2] with
relevance feedback [3]–[5] is widely used. It requires
users to select multiple relevant and irrelevant image ex-
amples, from which visual similarity metrics are learned
through online training. Images are re-ranked based on
the learned visual similarities. However, for web-scale
commercial systems, users’ feedback has to be limited
to the minimum without online training.

Online image re-ranking [6]–[8], which limits users’
effort to just one-click feedback, is an effective way
to improve search results and its interaction is simple
enough. Major web image search engines have adopted
this strategy [8]. Its diagram is shown in Figure 1. Given
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a query keyword input by a user, a pool of images
relevant to the query keyword are retrieved by the search
engine according to a stored word-image index file.
Usually the size of the returned image pool is fixed, e.g.
containing 1, 000 images. By asking the user to select a
query image, which reflects the user’s search intention,
from the pool, the remaining images in the pool are re-
ranked based on their visual similarities with the query
image. The word-image index file and visual features
of images are pre-computed offline and stored1. The
main online computational cost is on comparing visual
features. To achieve high efficiency, the visual feature
vectors need to be short and their matching needs to be
fast. Some popular visual features are in high dimensions
and efficiency is not satisfactory if they are directly
matched.

Another major challenge is that, without online train-
ing, the similarities of low-level visual features may not
well correlate with images’ high-level semantic mean-
ings which interpret users’ search intention. Some exam-
ples are shown in Figure 2. Moreover, low-level features
are sometimes inconsistent with visual perception. For
example, if images of the same object are captured from
different viewpoints, under different lightings or even
with different compression artifacts, their low-level fea-
tures may change significantly, although humans think
the visual content does not change much. To reduce this

1. Visual features must be saved. The web image collection is dy-
namically updated. If the visual features are discarded and only the
similarity scores of images are stored, whenever a new image is added
into the collection and we have to compute its similarities with existing
images, whose visual features need be computed again.
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Fig. 1. The conventional image re-ranking framework.

Fig. 2. All the images shown in this figure are related to
palm trees. They are different in color, shape, and texture.

semantic gap and inconsistency with visual perception,
there have been a number of studies to map visual
features to a set of predefined concepts or attributes as
semantic signatures [9]–[12]. For example, Kovashka et
al. [12] proposed a system which refined image search
with relative attribute feedback. Users described their
search intention with reference images and a set of
pre-defined attributes. These concepts and attributes are
pre-trained offline and have tolerance with variation of
visual content. However, these approaches are only ap-
plicable to closed image sets of relatively small sizes, but
not suitable for online web-scale image re-ranking. Ac-
cording to our empirical study, images retrieved by 120
query keywords alone include more than 1500 concepts.
It is difficult and inefficient to design a huge concept
dictionary to characterize highly diverse web images.
Since the topics of web images change dynamically,
it is desirable that the concepts and attributes can be
automatically found instead of being manually defined.

1.1 Our Approach
In this paper, a novel framework is proposed for web
image re-ranking. Instead of manually defining a uni-
versal concept dictionary, it learns different semantic
spaces for different query keywords individually and
automatically. The semantic space related to the images
to be re-ranked can be significantly narrowed down
by the query keyword provided by the user. For ex-
ample, if the query keyword is “apple”, the concepts
of “mountain” and “Paris” are irrelevant and should
be excluded. Instead, the concepts of “computer” and
“fruit” will be used as dimensions to learn the semantic
space related to “apple”. The query-specific semantic

spaces can more accurately model the images to be
re-ranked, since they have excluded other potentially
unlimited number of irrelevant concepts, which serve
only as noise and deteriorate the re-ranking performance
on both accuracy and computational cost. The visual and
textual features of images are then projected into their
related semantic spaces to get semantic signatures. At the
online stage, images are re-ranked by comparing their
semantic signatures obtained from the semantic space of
the query keyword. The semantic correlation between
concepts is explored and incorporated when computing
the similarity of semantic signatures.

Our experiments show that the semantic space of
a query keyword can be described by just 20 − 30
concepts (also referred as “reference classes”). Therefore
the semantic signatures are very short and online image
re-ranking becomes extremely efficient. Because of the
large number of keywords and the dynamic variations
of the web, the semantic spaces of query keywords are
automatically learned through keyword expansion.

We introduce a large scale benchmark database2 with
manually labeled ground truth. It includes 120, 000 im-
ages retrieved by the Bing Image Search using 120
query keywords. Experiments on this database show
that 25%−40% relative improvement has been achieved
on re-ranking precisions with around 70 times speedup,
compared with the state-of-the-art methods.

The proposed query-specific semantic signatures are
also effective on image re-ranking without query images
being selected [13]–[32]. The effectiveness is shown in
Section 7 through evaluation on the MSRA-MM dataset
[33] and comparison with the state-of-the-art methods.

1.2 Discussion on Search Scenarios
We consider the following search scenarios when design-
ing the system and doing evaluation. When a user inputs
a textual query (e.g. “Disney”) and starts to browse
the text-based research result, he or she has a search
intention, which could be a particular target image or
images in a particular category (e.g. images of Cinderella
Castle). Once the user finds a candidate image similar to
the target image or belonging to the category of interest,
the re-ranking function is used by choosing that candi-
date image as a query image. Certain criteria should be
considered in these search scenarios. (1) In both cases, we
expect the top ranked images are in the same semantic
category as the query image (e.g. images of princesses
and Disney logo are considered as irrelevant). (2) If the
search intention is to find a target image, we expect that
images visually similar to the query image should have
higher ranks. (3) If the search intention is to browse
images of a particular semantic category, diversity of
candidate images may also be considered.

The first two criteria have been considered in our sys-
tem design. Our query-specific semantic signatures effec-
tively reduce the gap between low-level visual features

2. http://mmlab.ie.cuhk.edu.hk/CUHKSR/Dataset.htm
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and semantic categories, and also make image matching
more consistent with visual perception. Details in later
sections will show that if a candidate image is very
similar to the query image, the distance of their semantic
signatures will be close to zero and the candidate image
will have a high rank. To evaluate the first criterion in
experiments, we manually label images into categories
according to their semantic meanings, and compare with
re-ranking results in Section 6.1-6.6. It is measured with
precisions. The second criterion is more subjective. We
conduct a user study in Section 6.7, where the subjects
were informed to consider the first two criteria.

In this paper, we do not consider increasing the diver-
sity of search result by removing near-duplicate or very
similar images, which is another important issue in web
image search and has a lot of existing works [34], [35].
We re-rank the first 1, 000 candidate images returned
by the commercial web image search engine, which has
considered the diversity issue and removed many near-
duplicate images. The query-specific semantic signature
is proposed to reduce semantic gap but cannot directly
increase the diversity of search result. We do not address
the diversity problem to make the paper focused on
semantic signatures. However, we believe that the two
aspects can incorporated in multiple possible ways.

2 RELATED WORK
The key component of image re-ranking is to compute
visual similarities reflecting semantic relevance of im-
ages. Many visual features [36]–[40] have been devel-
oped in recent years. However, for different query im-
ages, the effective low-level visual features are different.
Therefore, Cui et al. [6], [7] classified query images into
eight predefined intention categories and gave different
feature weighting schemes to different types of query im-
ages. But it was difficult for the eight weighting schemes
to cover the large diversity of all the web images. It
was also likely for a query image to be classified to a
wrong category. In order to reduce the semantic gap,
query-specific semantic signature was first proposed in
[41]. Kuo et al. [42] recently augmented each image with
relevant semantic features through propagation over a
visual graph and a textual graph which were correlated.

Another way of learning visual similarities without
adding users’ burden is pseudo relevance feedback [43]–
[45]. It takes the top N images most visually similar to
the query image as expanded positive examples to learn
a similarity metric. Since the top N images are not nec-
essarily semantically-consistent with the query image,
the learned similarity metric may not reliably reflect the
semantic relevance and may even deteriorate re-ranking
performance. In object retrieval, in order to purify the
expanded positive examples, the spatial configurations
of local visual features are verified [46]–[48]. But it is not
applicable to general web image search, where relevant
images may not contain the same objects.

There is a lot of work [13]–[32] on using visual fea-
tures to re-rank images retrieved by initial text-only

search, however, without requiring users to select query
images. Tian et al. [24] formulated image re-ranking
with a Bayesian framework. Hsu et al. [15] used the
Information Bottleneck (IB) principle to maximize the
mutual information between search relevance and visual
features. Krapac et al. [26] introduced generic classifiers
based on query-relative features which could be used
for new query keywords without additional training.
Jing et al. [21] proposed VisualRank to analyze the
visual link structures of images and to find the visual
themes for re-ranking. Lu et al. [31] proposed the deep
context to refine search results. Cai et al. [32] re-ranked
images with attributes which were manually defined and
learned from manually labeled training samples. These
approaches assumed that there was one major semantic
category under a query keyword. Images were re-ranked
by modeling this dominant category with visual and
textual features. In Section 7, we show that the proposed
query-specific semantic signature is also effective in this
application, where it is crucial to reduce the semantic
gap when computing the similarities of images. Due to
the ambiguity of query keywords, there may be multiple
semantic categories under one keyword query. Without
query images selected by users, these approaches cannot
accurately capture users’ search intention.

Recently, for general image recognition and matching,
there have been a number of works on using pro-
jections over predefined concepts, attributes or refer-
ence classes as image signatures. The classifiers of con-
cepts, attributes, and reference classes are trained from
known classes with labeled examples. But the knowl-
edge learned from the known classes can be transferred
to recognize samples of novel classes which have few
or even no training samples. Since these concepts, at-
tributes, and reference classes are defined with semantic
meanings, the projections over them can well capture the
semantic meanings of new images even without further
training. Rasiwasia et al. [9] mapped visual features
to a universal concept dictionary for image retrieval.
Attributes [49] with semantic meanings were used for
object detection [10], [50], [51], object recognition [52]–
[60], face recognition [58], [61], [62], image search [60],
[63]–[67], action recognition [68], and 3D object retrieval
[69]. Lampert et al. [10] predefined a set of attributes on
an animal database and detected target objects based on
a combination of human-specified attributes instead of
training images. Sharmanska et al. [50] augmented this
representation with additional dimensions and allowed
a smooth transition between zero-shot learning, unsu-
pervised training and supervised training. Parikh and
Grauman [58] proposed relative attributes to indicate
the strength of an attribute in an image with respect to
other images. Parkash and Parikh [60] used attributes
to guide active learning. In order to detect objects of
many categories or even unseen categories, instead of
building a new detector for each category, Farhadi et
al. [51] learned part and attribute detectors which were
shared across categories and modeled the correlation
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among attributes. Some approaches [11], [54], [70], [71]
transferred knowledge between object classes by mea-
suring the similarities between novel object classes and
known object classes (called reference classes). For exam-
ple, Torresani et al. [71] proposed an image descriptor
which was the output of a number of classifiers on
a set of known image classes, and used it to match
images of other unrelated visual classes. In the current
approaches, all the concepts/attributes/reference-classes
are universally applied to all the images and they are
manually defined. They are more suitable for offline
databases with lower diversity (such as animal databases
[10], [54] and face databases [11]), since image classes in
these databases can better share similarities. To model
all the web images, a huge set of concepts or reference
classes are required, which is impractical and ineffective
for online image re-ranking. Intuitively, only a small
subset of the concepts are relevant to a specific query.
Many concepts irrelevant to the query not only increase
the computational cost but also deteriorate the accuracy
of re-ranking. However, how to automatically find such
relevant concepts and use them for online web image
re-ranking was not well explored in previous studies.

3 APPROACH OVERVIEW

The diagram of our approach is shown in Figure 3. It has
offline and online parts. At the offline stage, the reference
classes (which represent different concepts) related to
query keywords are automatically discovered and their
training images are automatically collected in several
steps. For a query keyword (e.g. “apple”), a set of most
relevant keyword expansions (such as “red apple” and
“apple macbook”) are automatically selected utilizing
both textual and visual information. This set of keyword
expansions defines the reference classes for the query

keyword. In order to automatically obtain the training
examples of a reference class, the keyword expansion
(e.g. “red apple”) is used to retrieve images by the search
engine based on textual information again. Images re-
trieved by the keyword expansion (“red apple”) are
much less diverse than those retrieved by the original
keyword (“apple”). After automatically removing out-
liers, the retrieved top images are used as the training
examples of the reference class. Some reference classes
(such as “apple laptop” and “apple macbook”) have
similar semantic meanings and their training sets are
visually similar. In order to improve the efficiency of
online image re-ranking, redundant reference classes are
removed. To better measure the similarity of semantic
signatures, the semantic correlation between reference
classes is estimated with a web-based kernel function.

For each query keyword, its reference classes forms
the basis of its semantic space. A multi-class classifier on
visual and textual features is trained from the training
sets of its reference classes and stored offline. Under
a query keyword, the semantic signature of an image
is extracted by computing the similarities between the
image and the reference classes of the query keyword
using the trained multi-class classifier. If there are K
types of visual/textual features, such as color, texture,
and shape, one could combine them together to train a
single classifier, which extracts one semantic signature
for an image. It is also possible to train a separate
classifier for each type of features. Then, the K classifiers
based on different types of features extract K semantic
signatures, which are combined at the later stage of
image matching. Our experiments show that the latter
strategy can increase the re-ranking accuracy at the cost
of storage and online matching efficiency because of the
increased size of semantic signatures.

According to the word-image index file, an image
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may be associated with multiple query keywords, which
have different semantic spaces. Therefore, it may have
different semantic signatures. The query keyword input
by the user decides which semantic signature to choose.
As an example shown in Figure 3, an image is associated
with three keywords “apple”, “mac” and “computer”.
When using any of the three keywords as query, this
image will be retrieved and re-ranked. However, under
different query keywords, different semantic spaces are
used. Therefore an image could have several semantic
signatures obtained in different semantic spaces. They
all need to be computed and stored offline.

At the online stage, a pool of images are retrieved
by the search engine according to the query keyword.
Since all the images in the pool are associated with the
query keyword according to the word-image index file,
they all have pre-computed semantic signatures in the
same semantic space specified by the query keyword.
Once the user chooses a query image, these semantic
signatures are used to compute image similarities for re-
ranking. The semantic correlation of reference classes is
incorporated when computing the similarities.

3.1 Discussion on Computational Cost and Storage
Compared with the conventional image re-ranking dia-
gram in Figure 1, our approach is much more efficient
at the online stage, because the main online computa-
tional cost is on comparing visual features or semantic
signatures and the lengths of semantic signatures are
much shorter than those of low-level visual features. For
example, the visual features used in [6] are of more than
1, 700 dimensions. According to our experiments, each
keyword has 25 reference classes on average. If only
one classifier is trained combining all types of visual
features, the semantic signatures are of 25 dimensions
on average. If separate classifiers are trained for different
types of visual features, the semantic signatures are of
100 − 200 dimensions3. Our approach does not involve
online training as required by pseudo relevance feed-
back [43]–[45]. It also provides much better re-ranking
accuracy, since offline training the classifiers of reference
classes captures the mapping between visual features
and semantic meanings. Experiments show that semantic
signatures are effective even if images do not belong to
any of the found reference classes.

However, in order to achieve significant improve-
ment of online efficiency and accuracy, our approach
does need extra offline computation and storage, which
come from collecting the training examples and refer-
ence classes, training the classifiers of reference classes
and computing the semantic signatures. According to
our experimental study, it takes 20 hours to learn the

3. In our experiments, 120 query keywords are considered. But
keyword expansions, which define reference classes, are from a very
large dictionary used by the web search engine. They could be any
words beyond the 120 ones. Different query keywords are processed
independently. If more query keywords are considered, the dimensions
of semantic signatures of each query keyword will not increase.

semantic spaces of 120 keywords using a machine with
Intel Xeon W5580 3.2G CPU. The total cost linearly
increases with the number of query keywords, which
can be processed in parallel. Given 1000 CPUs4, we will
be able to process 100,000 query keywords in one day.
With the fast growth of GPUs, it is feasible to process the
industrial scale queries. The extra storage of classifiers
and semantic signatures are comparable or even smaller
than the storage of visual features of images. In order
to periodically update the semantic spaces, one could
repeat the offline steps. However, a more efficient way
is to adopt the framework of incremental learning [72].
Our experimental studies show that the leaned seman-
tic spaces are still effective without being updated for
several months or even one year.

4 DISCOVERY OF REFERENCE CLASSES

4.1 Keyword Expansion
For a keyword q, we define its reference classes by
finding a set of keyword expansions E(q) most relevant
to q. To achieve this, a set of images S(q) are retrieved
by the search engine using q as query based on textual
information. Keyword expansions are found from words
extracted from images in S(q)5, according to a very
large dictionary used by the search engine. A keyword
expansion e ∈ E(q) is expected to frequently appear in
S(q). In addition, in order for reference classes to well
capture the visual content of images, we require that
there are subsets of images which all contain e and have
similar visual content. Based on these considerations,
E(q) is found in a search-and-rank way as follows.

For each image I ∈ S(q), all the images in S(q)
are re-ranked according to their visual similarities to I .
Here, we use the visual features and visual similarities
introduced in [6]. The T most frequent words WI =
{w1

I , w
2
I , · · · , wTI } among top D re-ranked images (most

visually similar to I) are found. {w1
I , w

2
I , · · · , wTI } are

sorted by the frequency of words appearing among the
D images from large to small. If a word w is among the
top ranked image, it has a ranking score rI(w) according
to its ranking order; otherwise rI(w) = 0,

rI(w) =

{
T − j w = wjI
0 w /∈WI .

(1)

The overall score of a word w is its accumulated ranking
scores over all the images,

r(w) =
∑
I∈S

rI(w). (2)

A large rI(w) indicates that w appears in a good
number of images visual similar to I . If w only exists
in a small number of images or the images containing
w are visually dissimilar to one another, rI(w) would be

4. Computational power of such a scale or even larger is used by
industry. Jing and Baluja [21] used 1000 CPUs to process images offline.

5. The words are extracted from filenames, ALT tags and surround-
ing text of images, after being stemmed and removing stop words.
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zero for most I . Therefore, if w has a high accumulated
ranking score r(w), it should be found among a large
number of images in S(q) and some images with w
are visually similar in the meanwhile. The P words
with highest scores are selected to form the keyword
expansions E(q), which define the reference classes. We
choose T = 3, D = 16, P = 30, and the size of S(q) is
1, 000.

An intuitive way of finding keyword expansions could
be first clustering images with visual/textual features
and then finding the most frequent word in each cluster
as the keyword expansion. We do not adopt this ap-
proach for two reasons. Images belonging to the same se-
mantic concept (e.g. “apple laptop”) have certain visual
diversity (e.g. due to variations of viewpoints and colors
of laptops). Therefore, one keyword expansion falls into
several image clusters. Similarly, one image cluster may
have several keyword expansions with high frequency,
because some concepts have overlaps on images. For
examples, an image may belong to “Paris Eiffel tower”,
“Paris nights” and “Paris Album”. Since the one-to-one
mapping between clusters and keyword expansions do
not exist, a post processing step similar to our approach
is needed to compute the scores of keywords selected
from multiple clusters and fuse them. The multimodal
and overlapping distributions of concepts can be well
handled by our approach. Secondly, clustering web im-
ages with visual and textual features is not an easy
task especially with the existence of many outliers. Bad
clustering result greatly affects later steps. Since we only
need keyword expansions, clustering is avoided in our
approach. For each image I , our approach only considers
its D nearest neighbors and is robust to outliers.

4.2 Training Images of Reference Classes
In order to automatically obtain the training images of
reference classes, each keyword expansion e combined
with the orginal keyword q is used as query to retrieve
images from the search engine and top K images are
kept. Since the expanded keywords e have less seman-
tic ambiguity than the original keyword q, the images
retrieved by e are much less diverse. After removing
outliers by k-means clustering, these images are used as
the training examples of the reference class. The cluster
number of k-means is set as 20 and clusters of sizes
smaller than 5 are removed as outliers.

4.3 Redundant Reference Classes
Some reference classes, e.g. “apple laptop” and “apple
macbook”, are pair-wisely similar in both semantics and
visual appearance. To reduce computational cost we
remove some redundant ones, which cannot increase the
discriminative power of the semantic space. To compute
the similarity between two reference classes, we use half
data in both classes to train a binary SVM classifier
to classify the other half data. If they can be easily
separated, the two classes are considered not similar.

P reference classes are obtained from previous steps.
The training images of reference class i are randomly
split into two sets, A1

i and A2
i . To measure the distinct-

ness D(i, j) between two reference classes i and j, a SVM
is trained from A1

i and A1
j . For each image in A2

i , the
SVM outputs a score of its probability of belonging to
class i. Assume the average score over A2

i is p̄i. Similarly,
the average score p̄j over A2

j is also computed. Then

D(i, j) = h((p̄i + p̄j)/2), (3)

where h is a monotonically increasing function. In our
approach, it is defined as

h(p̄) = 1− e−β(p̄−α), (4)

where β and α are two constants. When (p̄i+ p̄j)/2 goes
below the threshold α, h(p̄) decreases very quickly so
as to penalize pairwisely similar reference classes. We
empirically choose α = 0.6 and β = 30.

4.4 Reference Class Selection

We finally select a set of reference classes from the
P candidates. The keyword expansions of the selected
reference classes are most relevant to the query keyword
q. The relevance is defined by Eq (2). Meanwhile, we
require that the selected reference classes are dissimilar
with each other such that they are diverse enough to
characterize different aspects of its keyword. The distinc-
tiveness is measured by the P × P matrix D defined in
Section 4.3. The two criteria are simultaneously satisfied
by solving the following optimization problem.

We introduce an indicator vector y ∈ {0, 1}P such that
yi = 1 indicates reference class i is selected and yi = 0
indicates it is removed. y is estimated by solving,

arg max
y∈{0,1}P

{
λRy + yTDy

}
. (5)

Let ei be the keyword expansion of reference class i. R =
(r(e1), . . . , r(eP )), where r(ei) is defined in Eq (2). λ is the
scaling factor used to modulate the two criterions. Since
integer quadratic programming is NP hard, we relax y
to be in RP and select reference classes i whose yi ≥ 0.5.

5 SEMANTIC SIGNATURES

Given M reference classes for keyword q and their
training images, a multi-class classifier on the visual
features of images is trained and it outputs an M -
dimensional vector p, indicating the probabilities of a
new image I belonging to different reference classes.
p is used as the semantic signature of I . The distance
between two images Ia and Ib are measured as the L1-
distance between their semantic signatures pa and pb,

d(Ia, Ib) =
∥∥pa − pb∥∥

1
. (6)
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5.1 Combined Features vs Separate Features
In order to train the SVM classifier, we adopt six types
of visual features used in [6]: attention guided color
signature, color spatialet, wavelet [73], multi-layer rota-
tion invariant edge orientation histogram, histogram of
oriented gradients [37], and GIST [74]. They characterize
images from different perspectives of color, shape, and
texture. The total dimensionality around 1, 700.

A natural idea is to combine all the visual features to
train a single powerful SVM better distinguishing ref-
erence classes. However, the purpose of using semantic
signatures is to capture the visual content of an image,
which may belong to none of the reference classes,
instead of classifying it into one of the reference classes.
If there are K types of independent visual features,
it is more effective to train separate SVM classifiers
on different types of features and to combine the K
semantic signatures {pk}Kk=1 from the outputs of the
K classifiers. The K semantic signatures describe the
visual content from different aspects (e.g. color, texture,
and shape) and can better characterize images outside
the reference classes. For example, in Figure 4, “red
apple” and “apple tree” are two reference classes. A
new image of “green apple” can be well characterized
by two semantic signatures from two classifiers trained
on color features and shape features separately, since
“green apple” is similar to “red apple” in shape and
similar to “apple tree” in color. If the color and shape
features are combined to compute a single semantic
signature, it cannot well characterize the image of “green
apple”. Since the “green apple” is dissimilar to any
reference class when jointly considering color and shape,
the semantic signature has low distributions over all the
reference classes.

Then the distance between two images Ia and Ib is,

d(Ia, Ib) =

K∑
k=1

wk
∥∥pa,k − pb,k∥∥

1
, (7)

where wk is the weight on different semantic signatures
and it is specified by the query image Ia selected by the

user. wk is decided by the entropy of pa,k,

wk =
1

1 + eH(pa,k)
, (8)

H(pa,k) = −
M∑
i=1

pa,ki ln pa,ki . (9)

If pa,k uniformly distributes over reference classes, the
kth type of visual features of the query image cannot be
well characterized by any of the reference classes and
we assign a low weight to this semantic signature.

5.2 Incorporating Textual Features
Our approach provides a natural way to integrate vi-
sual and textual features. Semantic signatures can also
be computed from textual features and combined with
those from visual features. Visual and textual features are
in different modalities. However, after projecting into the
same semantic space, they have the same representation.
The semantic signatures from textual features are com-
puted as follows. Let E = {di, . . . , dm} be the training
examples of a reference class. di contains the words
extracted from image i and is treated as a document.
In principle, any document classifier can be used here.
We adopt a state-of-the-art approach proposed in [45]
to learn a word probability model p(w|θ), which is a
discrete distribution, from E. θ is the parameter of the
discrete distribution of words over the dictionary and it
is learned by maximizing the observed probability,∏

di∈E

∏
w∈di

(0.5p(w|θ) + 0.5p(w|C))n
i
w . (10)

niw is the frequency of word w in di, and p(w|C) is the
word probability built upon the whole repository C,

p(w|C) =

∑
di
niw

|C|
. (11)

Once θ is learned with EM, the textual similarity between
an image dj and the reference class is defined as∑

w∈dj

p(w|θ)njw. (12)

After normalization, the similarities to reference classes
are used as semantic signatures.

5.3 Incorporating Semantic Correlations
Eq (6) matches two semantic signatures along each di-
mension separately. It assumes the independency be-
tween reference classes, which are in fact semantically
related. For example, “apple macbook” is more related
to “apple ipad” than to “apple tree”. This indicates that
in order to more reasonably compute image similarities,
we should take into account such semantic correlations,
and allow one dimension in the semantic signature (e.g.
“apple macbook”) to match with its correlated dimen-
sions (e.g. “apple ipod”). We further improve the image
similarity proposed in Eq(6) with a bilinear form,
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s(Ia, Ib) =
∑
i,j

pa,iCijp
b,j = paTCpb, (13)

where C is an M by M matrix, whose (i, j)th entry
Cij denotes the strength of semantic correlation between
the ith and jth reference classes. If multiple semantic
signatures are used, we compute the bilinear similarity
on each type of semantic signatures and combine them
using the same weights as in Eq (7).

We adopt the web-based kernel function [75] to com-
pute the semantic correlations between reference classes.
For each reference class i, the expanded keywords ei+ q
is used as an input to the Google web search, and the top
50 Google snippets6, denoted as S(ei), are collected. Af-
ter removing the original keyword q from the snippets,
the term frequency (TF) vector of S(ei) is computed,
and the top 100 terms with the highest TFs in S(ei) are
reserved. Each ei has a different set of top 100 terms. We
L2-normalize the truncated vector, and denote the result
vector as ntf(ei). The dimensionality of ntf(ei) is equal
to the size of the dictionary. However, only the top 100
terms of ei with highest TFs have non-zero values. The
semantic correlation between the ith and jth reference
classes, i.e. ei and ej , is computed as

Ci,j = cosine(ntf(ei), ntf(ej)). (14)

6 EXPERIMENTAL RESULTS

The images for testing the performance of re-ranking and
the training images of reference classes can be collected
at different time (since the update of reference classes
may be delayed) and from different search engines.
Given a query keyword, 1000 images are retrieved from
the whole web using a search engine. As summarized
in Table 1, we create three data sets to evaluate the
performance of our approach in different scenarios. In
data set I, 120, 000 testing images for re-ranking were
collected from the Bing Image Search with 120 query
keywords in July 2010. These query keywords cover
diverse topics including animals, plants, food, places,
people, events, objects, and scenes, etc. The training
images of reference classes were also collected from the
Bing Image Search around the same time. Data set II
uses the same testing images as in data set I. However,
its training images of reference classes were collected
from the Google Image Search also in July 2010. In data
set III, both testing and training images were collected
from the Bing Image Search but at different time (eleven
months apart)7. All the testing images for re-ranking are
manually labeled, while the images of reference classes,
whose number is much larger, are not labeled.

6. Google snippet is a short summary generated by Google for each
search result item in response to the query.

7. It would be closer to the scenario of real applications if test images
were collected later than the images of reference classes. However, such
data set is not available for now. Although data set III is smaller than
data set I, it is comparable with the data set used in [6].

6.1 Re-ranking precisions
We invited five labelers to manually label testing im-
ages under each query keyword into different categories
according to semantic meanings. Image categories were
carefully defined by the five labelers through inspecting
all the testing images under a query keyword. Defining
image categories was completely independent of dis-
covering reference classes. The labelers were unaware
of what reference classes have been discovered by our
system. The number of image categories is also different
than the number of reference classes. Each image was la-
beled by at least three labelers and its label was decided
by voting. Some images irrelevant to query keywords
were labeled as outliers and not assigned to any category.

Averaged top m precision is used as the evaluation
criterion. Top m precision is defined as the proportion
of relevant images among top m re-ranked images. Rel-
evant images are those in the same category as the query
image. Averaged top m precision is obtained by averag-
ing over all the query images. For a query keyword, each
of the 1, 000 images retrieved only by keywords is used
as a query image in turn, excluding outlier images. We
do not adopt the precision-recall curve, since in image re-
ranking the users are more concerned about the qualities
of top ranked images instead of the number of relevant
images returned in the whole result set.

We compare with two image re-ranking approaches
used in [6], which directly compare visual features, and
two approaches of pseudo-relevance feedback [43], [44],
which online learns visual similarity metrics.
• Global Weighting. Fixed weights are adopted to

fuse the distances of different visual features [6].
• Adaptive Weighting. [6] proposed adaptive weights

for query images to fuse the distances of different
visual features. It is adopted by Bing Image Search.

• PRF. The pseudo-relevance feedback approach pro-
posed in [43]. It used top-ranked images as positive
examples to train a one-class SVM .

• NPRF. The pseudo-relevance feedback approach
proposed in [44]. It used top-ranked images as
positive examples and bottom-ranked images as
negative examples to train a SVM.

For our approach, two different ways of computing
semantic signatures in Section 5.1 are compared.
• Query-specific visual semantic space using single signa-

tures (QSVSS Single). For an image, a single seman-
tic signature is computed from one SVM classifier
trained by combining all types of visual features.

• Query-specific visual semantic space using multiple sig-
natures (QSVSS Multiple). For an image, multiple
semantic signatures are computed from multiple
SVM classifiers, each of which is trained on one type
of visual features separately.

QSVSS Single and QSVSS Multiple do not use textual
features to compute semantic signatures and do not in-
corporate semantic correlation between reference classes.
The two improvements are evaluated in Section 6.5 and
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TABLE 1. Descriptions of data sets

Data set Images for re-ranking Images of reference classes
# Keywords # Images Collecting date Search engine Collecting date Search engine

I 120 120,000 July 2010 Bing Image Search July 2010 Bing Image Search
II July 2010 Google Image Search
III 10 10,000 August 2009 Bing Image Search July 2010 Bing Image Search

Data set I Data set II Data set III

25%

30%

35%

40%

45%

50%

55%

Top10 Top30 Top50 Top70 Top90

Av
er

ag
ed

  P
re

ci
si

on

QSVSS_Multiple
QSVSS_Single
NPRF
PRF
Adaptive Weighting
Global Weighting

25%

30%

35%

40%

45%

50%

55%

Top10 Top30 Top50 Top70 Top90

Av
er

ag
ed

  P
re

ci
si

on

QSVSS_Multiple
QSVSS_Single
NPRF
PRF
Adaptive Weighting
Global Weighting

35%

40%

45%

50%

55%

60%

65%

70%

Top10 Top30 Top50 Top70 Top90

Av
er

ag
ed

  P
re

ci
si

on

QSVSS_Multiple
QSVSS_Single
NPRF
PRF
Adaptive Weighting
Global Weighting

(a) (b) (c)
Data set I Data set II Data set III

0 1 
8 

14 

32 
27 

18 

7 8 
2 3 

0

10

20

30

40 Number of Query Keywords

0% 4% 8% 12% 16% 20%
Improvement of Averaged Top 10 Precision

3 

19 

27 
32 

19 

10 
7 

2 0 1 0 
0

10

20

30

40 Number of Query Keywords

0% 4% 8% 12% 16% 20%
Improvement of Averaged Top 10 Precision

0%

3%

6%

9%

12%
Improvement of Averaged 

Top 10 Precision 

(d) (e) (f)
Fig. 5. (a)-(c): averaged top m precisions on data set I, II, III. (d)-(e): histograms of improvements of averaged top 10
precisions on data sets I and II by comparing QSVSS Multiple with Adaptive Weighting. (f): improvements of averaged
top 10 precisions on the 10 query keywords on data set III by comparing QSVSS Multiple with Adaptive Weighting.

6.6. The visual features in all the six approaches above
are the same as [6]. The parameters of our approaches
mentioned in Section 4 and 5 are tuned in a small
separate dataset and fixed in all the experiments.

The averaged top m precisions on data sets I-III are
shown in Figure 5 (a)-(c). Our approach significantly
outperforms Global Weighting and Adaptive Weighting,
which directly compare visual features. On data set I,
the averaged top 10 precision is enhanced from 44.41%
(Adaptive Weighting) to 55.12% (QSVSS Multiple).
24.1% relative improvement is achieved. Figure 5 (d) and
(e) show the histograms of improvements of averaged
top 10 precision of the 120 query keywords on data set
I and II by comparing QSVSS Multiple with Adaptive
Weighting. Figure 5 (f) shows the improvements on the
10 query keywords on data set III. Our approach also
outperforms pseudo-relevance feedback.

Computing multiple semantic signatures from sepa-
rate visual features has higher precisions than computing
a single semantic signature from combined features. It
costs more online computation since the dimensionality
of multiple semantic signatures is higher. Figure 6 shows
the sensitivity of QSVSS Multiple and QSVSS Single to
the choice of parameters α and β in Eq. (4). They are
robust in certain ranges. Comparing Figure 5 (a) and
(b), if the testing images for re-ranking and the images
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Fig. 6. Averaged top 20 precisions on Data set III when (a)
choosing different α while fixing β = 30; and (b) choosing
different β while fixing α = 0.6.

of reference classes are collected from different search
engines, the performance is slightly lower than the case
when they are collected from the same search engine. But
it is still much higher than matching visual features. It
indicates that we can utilize images from various sources
to learn query-specific semantic spaces. As shown in
Figure 5 (c), even if the testing images and the images
of reference classes are collected eleven months apart,
query-specific semantic spaces are still effective. Com-
pared with Adaptive Weighting, the averaged top 10
precision has been improved by 6.6% and the averaged
top 100 precision has been improved by 9.3%. This
indicates that once the query-specific semantic spaces are
learned, they can remain effective for a long time.
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Fig. 7. Comparisons of averaged top m precisions of
re-ranking images outside reference classes and using
universal semantic space on data set III.

6.2 Online efficiency
The online computational cost depends on the length of
visual feature (if matching visual features) or semantic
signatures (if using our approach). In our experiments,
the visual features have around 1, 700 dimensions, and
the averaged number of reference classes per query is
25. Thus the length of QSVSS Single is 25 on average.
Since six types of visual features are used, the length
of QSVSS Multiple is 150. It takes 12ms to re-rank 1000
images matching visual features, while QSVSS Multiple
and QSVSS Single only need 1.14ms and 0.2ms. Given
the large improvement on precisions, our approach also
improves the efficiency by 10 to 60 times.

6.3 Re-ranking images outside reference classes
It is interesting to know whether the query-specific
semantic spaces are effective for query images outside
reference classes. We design an experiment to answer
this question. If the category of an query image corre-
sponds to a reference class, we deliberately delete this
reference class and use the remaining reference classes to
train SVM classifiers and to compute semantic signatures
when comparing this query image with other images. We
repeat this for every image and calculate the average top
m precisions. This evaluation is denoted as RmCatego-
ryRef and is done on data set III8. QSVSS Multiple is
used. The results are shown in Figure 7. It still greatly
outperforms the approaches of directly comparing visual
features. It can be explained from two aspects. (1) As dis-
cussed in Section 5.1, QSVSS Multiple can characterize
the visual content of images outside reference classes.
(2) Many negative examples (belonging to different cat-
egories than the query image) are well modeled by the
reference classes and are therefore pushed backward on
the ranking list. Therefore query-specific semantic spaces
are effective for query images outside reference classes.

6.4 Query-specific vs. universal semantic spaces
In previous works [9]–[11], [54], [70], a universal set
of reference classes or concepts were used to map vi-
sual features to a semantic space for object recognition

8. We did not test on dataset I or II since it is very time consuming.
For every query image, SVM classifiers have to be re-trained.

or image retrieval on closed databases. We evaluate
whether it is applicable to web-based image re-ranking.
We randomly select M reference classes from the whole
set of reference classes of all the 120 query keywords
in data set I. The M selected reference classes are used
to train a universal semantic space in a way similar to
Section 5.1. Multiple semantic signatures are obtained
from different types of features separately. This universal
semantic space is applied to data set III. The averaged
top m precisions are shown in Figure 7. M is cho-
sen as 25, 80, 120 and 1609. This method is denoted
as UnivMClasses. When the universal semantic space
chooses the same number (25) of reference classes as
our query-specific semantic spaces, its precisions are no
better than visual features. Its precisions increase when a
larger number of reference classes are selected. However,
the gain increases very slowly when M is larger than 80.
Its best precisions (when M = 160) are much lower than
QSVSS Multiple and RmCategoryRef, even though the
length of its semantic signatures is five times larger.

6.5 Incorporating textual features
As discussed in Section 5.2, semantic signatures can
be computed from textual features and combined with
those from visual features. Figure 8 compares the aver-
aged top m precisions of QSVSS Multiple with
• Query-specific textual and visual semantic space us-

ing multiple signatures (QSTVSS Multiple). For an
image, multiple semantic signatures are computed
from multiple classifiers, each of which is trained
on one type of visual or textual features separately.

• Textual feature alone (Text). The cross-entropy be-
tween the word histograms of two images is used
to compute the similarity.

It shows that incorporating textual features into the com-
putation of semantic signatures significantly improves
the performance. Moreover, the weights of combining
visual semantic signatures and textual semantic signa-
tures can be automatically decided by Eq (8).

6.6 Incorporating Semantic Correlations
As discussed in Section 5.3, we can further incorporate
semantic correlations between reference classes
when computing image similarities. For each
type of semantic signatures obtained above, i.e.,
QSVSS Single, QSVSS Multiple, and QSTVSS Multiple,
we compute the image similarity with Eq (13), and
name the corresponding results as QSVSS Single Corr,
QSVSS Multiple Corr, and QSTVSS Multiple Corr
respectively. Fig. 9 shows the re-ranking precisions
for all types of semantic signatures on the three data
sets. Notably, QSVSS Single Corr achieves around 10%
relative improvement compared with QSVSS Single,
reaching the performance of QSVSS Multiple despite
its signature is six times shorter.

9. We stop evaluating larger M because training a multi-class SVM
classifier on hundreds of classes is time consuming.
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Fig. 8. Averaged top m precisions incorporating textual features.
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Fig. 9. Incorporating semantic correlations among reference classes. (a)-(c): single visual semantic signatures
with/without sematic correlation. (d)-(f): multiple visual & textual semantic signatures with/without sematic correlation.

6.7 User study
In order to fully reflect the extent of users’ satisfac-
tion, user study is conducted to compare the results of
QSVSS Multiple10 and Adaptive Weighting on data set I.
Twenty users are invited. Eight of them are familiar with
image search and the other twelve are not. We ensure
that all the participants do not have any knowledge
about current approaches for image re-ranking, and they
are not told which results are from which methods. Each
user is assigned 20 queries and is asked to randomly
select 30 images per query. Each selected image is used
as a query image and the re-ranking results of Adaptive
Weighting and our approach are shown to the user.
The user is required to indicate whether our re-ranking
result is “Much Better”, “Better”, “Similar”, “Worse”,
or “Much Worse” than that of Adaptive Weighting. The
evaluation criteria are (1) the top ranked images belong
to the same semantic category as the query image; and
(2) candidate images which are more visual similar to the
query image have higher ranks. 12, 000 user comparison
results are collected and shown in Figure 10. In over 55%

10. Since Adaptive Weighting only uses visual features, to make the
comparison fair, textual features are not used to compute semantic
signatures and sematic correlation between classes is not considered.

cases our approach delivers better results. Ours is worse
only in fewer than 18% cases, which are often the noisy
cases with few images relevant to the query image.

Figure 11 (a) shows an example that QSVSS Multiple
provides much better results. The query keyword is
“palm”. The initial text-based search returns a pool of
images with diverse semantic meanings, such as palm
cell phones, palm centro and hands. The selected query
image is about palm trees on beach. After re-ranking,
QSVSS Multiple returns many images which have large
variance in visual content but are relevant to the query
image in semantic meanings. These images cannot be
found by directly matching visual features. Figure 11
(b) shows an example that QSVSS Multiple provides
worse results than Adaptive Weighting according to the
user study. Actually, in this example there are very few
images in the image pool relevant to the query image,
which can be regarded as an outlier. Both approaches
provide bad results. The user prefers the result of Adap-
tive Weighting perhaps because its result is more diverse,
although not many relevant images are found either.
Please find more examples in supplementary material.
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(a) (b)

Fig. 11. Examples of results of initial text-based search, image re-ranking by Adaptive Weighting [6] and by
QSVSS Multiple. The red crosses indicate the images irrelevant to the query image. Examples that QSVSS Multiple
has a better (a) or worse (b) result than Adaptive Weighting according to the user study.
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Fig. 10. Comparison results of user study on data set I.

7 RE-RANKING WITHOUT QUERY IMAGES

Query-specific semantic signature can also be applied
to image re-ranking without selecting query images.
This application also requires the user to input a query
keyword. But it assumes that images returned by initial
text-only search have a dominant topic and images
belonging to that topic should have higher ranks. A lot
of related works are discussed in the third paragraph
in Section 2. Existing approaches typically address two
issues: (1) how to compute the similarities between
images and reduce the semantic gap; and (2) how to
find the dominant topic with ranking algorithms based
on the similarities. Our query-specific semantic signature
is effective in this application since it can improve the
similarity measurement of images. In this experiment
QSVSS Multiple is used to compute similarities. We
compare with the state-of-the-art methods on the public
MSRA-MM V1.0 dataset [33]. This dataset includes 68 di-
verse yet representative queries collected from the query
log of Bing, and contains 60, 257 images. Each image
was manually labeled into three relevance levels and
the Normalized Discounted Cumulated Gain (NDCG)
[28] is used as the standard evaluation metric. NDCG
at rank m is calculated as NDCG@m = 1

Z

∑m
j=1

2tj−1

log(1+j) ,
where tj is the relevance level the jth image in the

rank list and Z is a normalization constant to make
NDCG@m be 1 for a perfect ranking. We adopt three re-
ranking approaches by keeping their ranking algorithms
while replacing their features with our query-specific
semantic signatures: random walk (RWalk) [17], kernel-
based re-ranking by taking top N images as confident
samples (KernelTopN) [28], and kernel-based re-ranking
by detecting confident samples based on bounded vari-
able least square (KernelBVLS) [28]. The details of these
ranking algorithms can be found in literature. Table 2
reports NDCG@m of initial text result, the three original
approaches in [17], [28], their corresponding versions
with our query-specific sematic signatures, Informa-
tion Bottleneck (IB) [15] and Bayesian Visual Ranking
(Bayesian) [24]. The NDCG@m improvements of these
approaches over initial result are shown in Figure 12. It
is observed that our query-specific semantic signatures
are very effective. Compared with the initial result, the
NDCG@m improvements of the three approaches in [17],
[28] are 0.007, 0.008 and 0.021, while the improvements
become 0.029, 0.052 and 0.067 when their features are
placed with query-specific semantic signatures.

8 CONCLUSION AND FUTURE WORK
We propose a novel framework, which learns query-
specific semantic spaces to significantly improve the
effectiveness and efficiency of online image re-ranking.
The visual features of images are projected into their
related semantic spaces automatically learned through
keyword expansions offline. The extracted semantic sig-
natures can be 70 times shorter than the original visual
features, while achieve 25%−40% relative improvement
on re-ranking precisions over state-of-the-art methods.

In the future work, our framework can be improved
along several directions. Finding the keyword expan-
sions used to define reference classes can incorporate
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TABLE 2. Performance of image re-ranking without selecting query images on the MSRA-MM V1.0 dataset. The
values in the parentheses are the NDCG@m improvements over initial search.

Initial IB [15] Bayesian [24] RWalk [17] KernelTopN [28] KernelBVLS [28]
original ours original ours original ours

NDCG@10 0.582 0.594(0.012) 0.592(0.010) 0.597(0.015) 0.617(0.035) 0.598(0.016) 0.640(0.058) 0.645(0.063) 0.655(0.073)
NDCG@50 0.556 0.570(0.014) 0.565(0.009) 0.563(0.007) 0.585(0.029) 0.564(0.008) 0.608(0.053) 0.587(0.031) 0.623(0.067)
NDCG@100 0.536 0.554(0.018) 0.559(0.023) 0.550(0.014) 0.580(0.044) 0.560(0.024) 0.605(0.069) 0.580(0.044) 0.618(0.082)
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Fig. 12. The NDCG@m improvements over initial search,
i.e. the difference between NDCG@m after re-ranking and
that without re-ranking.

other metadata and log data besides the textual and
visual features. For example, the co-occurrence informa-
tion of keywords in user queries is useful and can be
obtained in log data. In order to update the reference
classes over time in an efficient way, how to adopt incre-
mental learning [72] under our framework needs to be
further investigated. Although the semantic signatures
are already small, it is possible to make them more
compact and to further enhance their matching efficiency
using other technologies such as hashing [76].
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