

LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation

1. Introduction

FlowNet2 (CVPR17)

- . Large network cascade (~160M)
- 2. U-Net architecture
- 5. Image warping per cascade
- 4. Feature matching per cascade (except FlowNetS)
- LiteFlowNet outperforms FlowNet2 on the challenging Sintel final-pass and KITTI benchmarks.

LiteFlowNet (CVPR18)

- . Lightweight (~5M parameters)
- 2. Specialized architecture: - Data fidelity & regularization as variational methods
- 3. Feature warping per pyramid level 4. Cascaded flow inference per level - Descriptor matching & sub-pixel
- refinement
- 5. Flow regularization per level
- LiteFlowNet is **30.26 times smaller in the model size** and **1.36 times** faster in the running speed than FlowNet2.
- Our network innovates the useful elements from conventional methods:
- Brightness constraint in data fidelity to **pyramidal feature extraction**.
- Image warping to **feature warping**.
- We introduce a **cascaded flow inference** with **feature warping** and a flow regularization in each pyramid level.

Examples demonstrate the effectiveness of the proposed components.

Tak-Wai Hui, Xiaoou Tang, Chen Change Loy CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong

Project page (paper, supp. material, demo video, and code):

- We introduce a **feature-driven local convolution** (**f-lcon**) layer.

First Image		Flow	NetC		FlowNet2		FlowNet2-ft-kitti		LiteFlowNet-ft		
		110			110W1(012				Enter lowiter it		
Method	Sintel clean		Sintel final		KITTI12		KITTI15			Middlebury	
	train	test	train	test	train	test	train	train (Fl-all)	test (Fl-all)	train	test
FlowNetS	4.50	7.42	5.45	8.43	8.26	_	-	-	-	1.09	_
FlowNetS-ft	(3.66)	6.96	(4.44)	7.76	7.52	9.1	-	-	-	0.98	-
FlowNetC	4.31	7.28	5.87	8.81	9.35	-	-	-	-	1.15	-
FlowNetC-ft	(3.78)	6.85	(5.28)	8.51	8.79	-	-	-	-	0.93	-
FlowNet2-S	3.79	-	4.99	-	7.26	-	14.28	51.06%	-	1.04	-
FlowNet2-C	3.04	-	4.60	-	5.79	-	11.49	44.09%	-	0.98	-
FlowNet2	2.02	3.96	3.54	6.02	4.01	-	10.08	29.99%	-	0.35	0.52
FlowNet2-ft-sintel	(1.45)	4.16	(2.19)	5.74	3.54	-	9.94	28.02%	-	0.35	-
FlowNet2-ft-kitti	3.43	-	4.83	-	(1.43)	1.8	(2.36)	(8.88%)	11.48%	0.56	-
SPyNet	4.12	6.69	5.57	8.43	9.12	_	_	-	-	0.33	0.58
SPyNet-ft	(3.17)	6.64	(4.32)	8.36	3.36	4.1	-	-	35.07%	0.33	0.58
LiteFlowNetX	3.58	-	4.79	-	6.38	-	15.81	34.90%	-	0.46	-
LiteFlowNet	2.48	-	4.04	-	4.00	-	10.39	28.50%	-	0.39	-
LiteFlowNet-ft	(1.35)	4.54	(1.78)	5.38	(1.05)	1.6	(1.62)	(5.58%)	9.38%	0.30	0.40

• A feature-driven distance metric \mathcal{D} is trained to measure local flow variation from pyramidal feature, flow, and occlusion probability map.

• Channel c of a flow patch f is regularized by an adaptive **f-lcon** filter g:

 $f_g(x, y, c) = g(x, y, c) * f(x, y, c) ,$