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Collective Crowd Behaviors

e Examples of Collective Crowd Behaviors:

1. Bacterial colony 2. Fish school 3. Human crowd
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4. Human crowd 5. Human crowd




Understand Collective Crowd Behaviors

e Features of Collective Crowd Behavior

» Vanishing of individual personalities
» New characteristics beyond individual behaviors

» Shared beliefs and common goals ¥ tHE cROWD 1

A Study of the
Popalar Mind

Gustave Le Bom

by Le Bon (1841~1931)
in “The Crowd: A Study
of the Popular Mind”
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Crowd in Grand Central Station



Related Work

* Biology and Statistical Physics

» Exploring the mechanisms that lead to the
collective movements

» Studying the statistical principles and dynamics of
the crowd behaviors




Related Work

e Social Networks and Complex Networks

» Studying how individuals are connected into
collective communities

» Investigating how information propagates among
complex networks




Related Work

 Computer graphics

» Simulating virtual crowds in games and movies
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Related Work

e Computer Vision

» Learning and segmenting the motion patterns:

Flow fields Topic models Trajectory clustering
Ali CVPR'07 Hospedales ICCV’09 Makris SMC’05




Related Work

e Computer Vision
» Analyzing the social interaction between pedestrians:

Social-force model Tracking Abnormality detection
Pellegrini ICCV’09 Mehran CVPR'09

Helbing PRL'95, Nature’00

.........
..............

Group detection Interaction analysis
Ge PAMI'11




Our Work

* To quantitatively analyze crowd behaviors

» Framework of Dynamic Pedestrian-Agents
» Applications:
v'Learning collective behavior patterns
v'Recognizing collective behaviors
v'Detecting abnormal behaviors
v'Predicting future behaviors
v'Estimating scene statistics

 Challenges:

» Detection and tracking errors
» Different collective patterns mixed




Contributions of Our Work

1. Agent-based modeling of crowd behavior

2. Three factors to analyze crowd behavior

3. Learning from highly fragmented trajectories
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1. Agent-based modeling of crowd behavior

» Simple behavioral rules for multiple agents to generate
complex behaviors

» Simulating crowds and classifying collective behaviors

» Integrating with social-force model
Agent 2

Agent 1 Interactive dynamics Collective dynamics

Social-force model Our model
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2. Three factors to analyze crowd behavior

Dynamics

Starting point

» Beliefs of Pedestrian
Starting point and destination

» Collective Dynamics
Pedestrian movement patterns

» Timing of Emerging
It determines population in the scene
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Scene

Destination

Every pedestrian is driven by one type of agents, and the
whole crowd is modeled as a mixture of pedestrian-agents
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3. Learning from fragmented trajectories

Plot of trajectories Histogram of lengths
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» Estimating missing observations through model inference

o

» Regularizing the trajectories through estimating its starting point

and destination
Estimated starting point

Estimated past trajectory

Observed trajectory

Estimated future trajectory
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Estimated destination




Dynamic Pedestrian-Agents

* Beliefs: B = (u*. % u° &°)

N (xg|p*, &%),
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e Dynamics D = (A,
X; = AX¢—1 + wi, p(X¢|X—1) = N (X¢]Ax—1,I),
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Experiments

Simulating Crowd

Segmenting Semantic Regions
Classifying Collective Behaviors
Predicting Behaviors of Pedestrians
Detecting Abnormal Behaviors
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Experiments: Simulating Crowd

e Examples of learned dynamic pedestrian-agents

Frame No.729: Current pedestrian number=6 ) Frame No.508: Current pedestrian number=15 Frame No.1291: Qurrent pedestrian number=20
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Experiments: Simulating Crowd

e A Demo Video

Real Crowd and Trajectories Simulation
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Experiments: Simulating Crowd

e Statistics of the crowd from simulation
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Experiments: Segmenting Semantic Regions
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Experiments: Classifying Behaviors

* Trajectory clustering

0 Spectral clustering HDP (Wang
urs (Wang ECCV’06) CVPR’08)
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Experiments: Predicting Behaviors

e Estimating the future path of pedestrians
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Mean deviation/pixel
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e Detecting abnormal behaviors
| S
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Abnormal trajectories Abnormal: sudden turning Abnormal: running
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Conclusion

 Agent-based models are used to learn collective crowd
behaviors and to simulate crowds.

 Dynamics, Beliefs, and Timing are proposed to model
pedestrian-agents.

e Learning crowd behaviors from highly fragmented
trajectories.

e Various applications to crowd simulation, scene
segmentation, collective behavior classification,
abnormality detection and behavior prediction.
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Questions =12 |

 Enquiry: zhoubolei@gmail.com

e Data (video, trajectories) can be found at my
homepage.

Abnormal: sudden turning



