Deep Learning in Object Detection, Segmentation, and Recognition

Xiaogang Wang

Department of Electronic Engineering,
The Chinese University of Hong Kong

Crowd behaviour analysis

1986

- Solve general learning problems
- Tied with biological system

But it is given up...

- Hard to train
- Insufficient computational resources
- Small training sets
- Does not work well

- SVM
- Boosting
- Decision tree
- KNN
- ...

- Loose tie with biological systems
- Flat structures
- Specific methods for specific tasks
 - Hand crafted features (GMM-HMM, SIFT, LBP, HOG)

Kruger et al. TPAMI'13

- Unsupervised & Layer-wised pre-training
- Better designs for modeling and training (normalization, nonlinearity, dropout)
- Feature learning
- New development of computer architectures
 - GPU
 - Multi-core computer systems
- Large scale databases

deep learning results

task	hours of	DNN-HMM	GMM-HMM
	training data		with same data
Switchboard (test set 1)	309	18.5	27.4
Switchboard (test set 2)	309	16.1	23.6
English Broadcast News	50	17.5	18.8
Bing Voice Search	24	30.4	36.2
(Sentence error rates)			
Google Voice Input	5,870	12.3	
Youtube	1,400	47.6	52.3
	•	•	

Deep Networks Advance State of Art in Speech

How Many Computers to Identify a Cat? 16000 CPU cores

Rank	Name	Error rate	Description
1	U. Toronto	0.15315	Deep learning
2	U. Tokyo	0.26172	Hand-crafted
3	U. Oxford	0.26979	features and learning models. Bottleneck.
4	Xerox/INRIA	0.27058	

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

ImageNet 2013

Rank	Name	Error rate	Description
1	NYU	0.11197	Deep learning
2	NUS	0.12535	Deep learning
3	Oxford	0.13555	Deep learning

MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto

Top 20 groups all used deep learning

- Google and Baidu announced their deep learning based visual search engines (2013)
 - Google
 - Baidu

Works Done by Us

Detection

- > Pedestrian detection
- > Facial keypoint detection

Segmentation

- Face parsing
- > Pedestrian parsing

Recognition

- > Face verification
- Face attribute recognition

Pedestrian Detection

Improve state-of-the-art average miss detection rate on the largest Caltech dataset from 63% to 39%

ICCV'13

CVPR'12 CVPR'13 ICCV'13

Facial keypoint detection, CVPR'13 (2% average error on LFPW)

Face parsing, CVPR'12

Pedestrian parsing, CVPR'12

Face Recognition and Face Attribute Recognition

(LFW: 96.45%)

Face verification, ICCV'13

Recovering Canonical-View Face Images, ICCV'13

Face attribute recognition, ICCV'13

Introduction on Classical Deep Models

- Convolutional Neural Networks (CNN)
- Deep Belief Net (DBN)
- Auto-encoder

Classical Deep Models

- Convolutional Neural Networks (CNN)
 - LeCun'95

Classical Deep Models

- Deep belief net
 - Hinton'06

$$P(x,h_1,h_2) = p(x|h_1) p(h_1,h_2)$$

$$P(\mathbf{x}, \mathbf{h}_1) = \frac{e^{-E(\mathbf{x}, \mathbf{h}_1)}}{\sum_{\mathbf{x}, \mathbf{h}_1} e^{-E(\mathbf{x}, \mathbf{h}_1)}}$$

$$E(x,h_1)=b'x+c'h_1+h_1'Wx$$

Classical Deep Models

- Auto-encoder
 - Hinton'06

Encoding:
$$\mathbf{h}_1 = \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$

$$\mathbf{h}_2 = \sigma(\mathbf{W}_2\mathbf{h}_1 + \mathbf{b}_2)$$

Decoding:
$$\tilde{\mathbf{h}}_1 = \sigma(\mathbf{W'}_2\mathbf{h}_2 + \mathbf{b}_3)$$

$$\widetilde{\mathbf{X}} = \sigma(\mathbf{W'}_1\mathbf{h}_1 + \mathbf{b}_4)$$

Opinion I

- How to formulate a vision problem with deep learning?
 - Make use of experience and insights obtained in CV research
 - Sequential design/learning vs joint learning
 - Effectively train a deep model (layerwise pre-training + fine tuning)

Opinion II

- How to make use of the large learning capacity of deep models?
 - High dimensional data transform
 - Hierarchical nonlinear representations

Opinion III

- Deep learning likes challenging tasks (for better generalization)
 - Make input data more challenging (augmenting data by translating, rotating, and scaling)
 - Make training process more challenging (dropout: randomly setting some responses to zero; dropconnect: randomly setting some weights to zero)
 - Make prediction more challenging

Y. Sun, X. Wang, and X. Tang, "Hybrid Deep Learning for Computing Face Similarities," ICCV'13

Learning feature through face verification (predicting 0/1 label): 92.57% on LFW with 480 CNNs

Learning feature through face reconstruction (predicting 9216 pixels): 96.45% on LFW with 4 CNNs

 $\hat{\mathbf{U}}$

Z. Zhu, P. Luo, X. Wang, and X. Tang, "Deep Learning Indentify-Preserving Face Space," ICCV 2013.

Joint Deep Learning

What if we treat an existing deep model as a black box in pedestrian detection?

ConvNet-U-MS

 Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, "Pedestrian Detection with Unsupervised Multi-Stage Feature Learning," CVPR 2013.

Results on Caltech Test

Results on ETHZ

- N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
 CVPR, 2005. (6000 citations)
- P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained, Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)
- W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling. CVPR, 2012.

Our Joint Deep Learning Model

Modeling Part Detectors

 Design the filters in the second convolutional layer with variable sizes

Part models learned from HOG

Part models

Learned filtered at the second convolutional layer

Deformation Layer

Visibility Reasoning with Deep Belief Net

Experimental Results

Caltech – Test dataset (largest, most widely used)

- W. Ouyang and X. Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling," CVPR 2012.
- W. Ouyang xi Zengland xt wange intodeling virtual visibility Retation ship on Pedestrian Detection 2 CMPRe 2013.
- W. Ouyang/Niaogang Wang, "Single-Badestrian Retection aided by Multi-pedestrian Detection in CVRR 2013eee.org.org
- X. Zeng, AMSP uvang and ApWares "Chi Gascader de Parre-Learning Architecture for Medert in an extertion of the Children and Appendix of the Children and Appendix
- W. Ouyang and Nieogang Wens in Joint agen Learning for anything Detection of High Gevection rates. This
 - work is distinguished by three key contributions. The first is the introduction of a new ...
 - Cited by 7647 Related articles All 201 versions Import into BibTeX More ▼

Results on Caltech Test

Results on ETHZ

DN-HOG UDN-HOG UDN-HOGCSS UDN-CNNFeat UDN-DefLayer

Multi-Stage Contextual Deep Learning

Motivated by Cascaded Classifiers and Contextual Boost

- The classifier of each stage deals with a specific set of samples
- The score map output by one classifier can serve as contextual information for the next classifier

- Only pass one detection score to the next stage
- Classifiers are trained sequentially

Conventional cascaded classifiers for detection

- Our deep model keeps the score map output by the current classifier and it serves as contextual information to support the decision at the next stage
- Cascaded classifiers are jointly optimized instead of being trained sequentially
- To avoid overfitting, a stage-wise pre-training scheme is proposed to regularize optimization
- Simulate the cascaded classifiers by mining hard samples to train the network stage-by-stage

Training Strategies

- Unsupervised pre-train $\mathbf{W}_{h,i+1}$ layer-by-layer, setting $\mathbf{W}_{s,i+1} = 0$, $\mathbf{F}_{i+1} = 0$
- Fine-tune all the W_{h,i+1} with supervised BP
- Train F_{i+1} and W_{s,i+1} with BP stage-by-stage
- A correctly classified sampled at the previous stage does not influence the update of parameters
- Stage-by-stage training can be considered as adding regularization constraints to parameters, i.e. some parameters are constrained to be zeros in the early training stages

Log error function:

$$E = -l\log y - (1-l)\log(1-y)$$

Gradients for updating parameters:

$$d\theta_{i,j} = -\frac{\partial E}{\partial \theta_{i,j}} = -\frac{\partial E}{\partial y} \frac{\partial y}{\partial \theta_{i,j}} = -(y-l) \frac{\partial y}{\partial \theta_{i,j}}$$

Experimental Results

Comparison of Different Training Strategies

Network-BP: use back propagation to update all the parameters without pre-training **PretrainTransferMatrix-BP**: the transfer matrices are unsupervised pertrained, and then all the parameters are fine-tuned

Multi-stage: our multi-stage training strategy

High-Dimensional Data Transforms

Facial keypoint detection: face image -> facial keypoint

Face transform: face image in a arbitrary view -> face image in a canonical view

Face parsing: face image -> segmentation maps

Pedestrian parsing: pedestiran image -> segmentation maps

Recovering Canonical-View Face Images

 Z. Zhu, P. Luo, X. Wang, and X. Tang, "Deep Learning Indentity-Preserving Face Space," ICCV 2013.

Reconstruction examples from LFW

- No 3D model; no prior information on pose and lighting condition
- Deep model can disentangle hidden factors through feature extraction over multiple layers
- Model multiple complex transforms
- Reconstructing the whole face is a much strong supervision than predicting 0/1 class label and helps to avoid overfitting

Arbitrary view

Canonical view

Comparison on Multi-PIE

	-45°	-30°	-15°	+15°	+30°	+45°	Avg	Pose
LGBP [26]	37.7	62.5	77	83	59.2	36.1	59.3	V
LOBP [20]	57.7	02.5	//	65	39.2	30.1	33.3	V
VAAM [17]	74.1	91	95.7	95.7	89.5	74.8	86.9	٧
FA-EGFC[3]	84.7	95	99.3	99	92.9	85.2	92.7	x
SA-EGFC[3]	93	98.7	99.7	99.7	98.3	93.6	97.2	٧
LE[4] + LDA	86.9	95.5	99.9	99.7	95.5	81.8	93.2	X
CRBM[9] + LDA	80.3	90.5	94.9	96.4	88.3	89.8	87.6	X
Ours	95.6	98.5	100.0	99.3	98.5	97.8	98.3	x

- [3] A. Asthana, T. K. Marks, M. J. Jones, K. H. Tieu, and M. Rohith. Fully automatic pose-invariant face recognition via 3d pose normalization. In *ICCV*, pages 937–944, 2011. 1, 5, 6
- [17] S. Li, X. Liu, X. Chai, H. Zhang, S. Lao, and S. Shan. Morphable displacement field based image matching for face recognition across pose. In *ECCV*, pages 102–115. 2012. 1, 2, 5, 6
- [4] Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with learning-based descriptor. In *CVPR*, pages 2707–2714, 2010. 2, 3, 6
- [26] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang. Local gabor binary pattern histogram sequence (lgbphs): A novel non-statistical model for face representation and recognition. In *ICCV*, volume 1, pages 786–791, 2005. 5, 6
- [9] G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical representations for face verification with convolutional deep belief networks. In *CVPR*, pages 2518–2525, 2012. 3, 6

Comparison on LFW (without outside training data)

Methods	Accuracy (%)
PLDA (Li, TPAMI'12)	90.07
Joint Bayesian (Chen, ECCV'12, 5-point align)	90.9
Fisher Vector Faces (Barkan, ICCV'13)	93.30
High-dim LBP (Chen, CVPR'13, 27-point align)	93.18
Ours (5-point align)	94.38

Comparison on LFW (with outside training data)

Methods	Accuracy (%)
Associate-Predict (Yin CVPR'12)	90.57
Joint Bayesian (Chen, ECCV'12, 5-point align)	92.4
Tom-vs-Peter (Berg, BMVC'12, 90-point align)	93.30
High-dim LBP (Chen, CVPR'13, 27-point align)	95.17
Transfer learning joint Bayesian (Cao, ICCV'13, 27-point align)	96.33
Ours (5-point align)	96.45

Face Parsing

 P. Luo, X. Wang and X. Tang, "Hierarchical Face Parsing via Deep Learning," CVPR 2012

Motivations

- Recast face segmentation as a cross-modality data transformation problem
- Cross modality autoencoder
- Data of two different modalities share the same representations in the deep model
- Deep models can be used to learn shape priors for segmentation

Hierarchical Representation of Face Parsing

Joint Bayesian Formulation

- Detectors are trained with deep belief net (DBN) and segmentators are trained with deep autoencoder. Both have are generative models.
- Joint Bayesian framework for face detection, part detection, component detection, and component segmentation

Training Segmentators

Human Parsing

 P. Luo, X. Wang, and X. Tang, "Pedestrian Parsing via Deep Decompositional Network," ICCV 2013

Second row: our result Third row: ground truth

Facial Keypoint Detection

 Y. Sun, X. Wang and X. Tang, "Deep Convolutional Network Cascade for Facial Point Detection," CVPR 2013

Benefits of Using Deep Model

- Take the full face as input to make full use of texture context information over the entire face to locate each keypoint
- The first network of tacking the whole face as input needs
 deep structures to extract high-level features
- Since the networks are trained to predict all the keypoints simultaneously, the geometric constraints among keypoints are implicitly encoded

Comparison with Liang et al. [6], Valstar et al. [7], Luxand Face SDK [1] and Microsoft Research Face SDK [2] on BioID and LFPW. reduced average error

Relative improvement =

- http://www.luxand.com/facesdk/ 1.
- http://research.microsoft.com/en-us/projects/facesdk/. 2.
- O. Jesorsky, K. J. Kirchberg, and R. Frischholz. Robust face detection using the hausdorff distance. In Proc. AVBPA, 2001. 3.
- P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar. Localizing parts of faces using a consensus of exemplars. In Proc. CVPR, 2011. 4.
- 5. X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by explicit shape regression. In Proc. CVPR, 2012.
- 6. L. Liang, R. Xiao, F. Wen, and J. Sun. Face alignment via component-based discriminative search. In Proc. ECCV, 2008.
- 7. M. Valstar, B. Martinez, X. Binefa, and M. Pantic. Facial point detection using boosted regression and graph models. In Proc. CVPR, 2010.

Validation.

BioID.

LFPW.

Conclusions

- Deep learning can jointly optimize key components in vision systems
- Prior knowledge from vision research is valuable for developing deep models and training strategies
- Deep learning can solve some vision challenges as problems of high-dimensional data transform
- Challenging prediction tasks can make better use the large learning capacity and avoid overfitting

People working on deep learning in our group

Ping Luo

Yi Sun

Xingyu Zeng

Zhenyao Zhu

Acknowledgement

Hong Kong Research Grants Council

中国自然科学基金

Thank you!

http://mmlab.ie.cuhk.edu.hk/

http://www.ee.cuhk.edu.hk/~xgwang/